Lecture Notes In

Artificial Intelligence

Subseries of Lecture Notes in Computer Science

Hiroki Arimura Sanjay Jain
Arun Sharma (Eds.)

Algorithmic
Learning Theory

11th International Conference, ALT 2000
Sydney, Australia, December 2000
Proceedings

&) Springer

1968

Lecture Notes in Artificial Intelligence 1968

Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo

Hiroki Arimura Sanjay Jain
Arun Sharma (Eds.)

Algorithmic
Learning Theory

11th International Conference, ALT 2000
Sydney, Australia, December 11-13, 2000
Proceedings

Springer

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jorg Siekmann, University of Saarland, Saabriicken, Germany

Volume Editors

Hiroki Arimura

Kyushu University, Department of Informatics
Hakozaki 6-10-1, Fukuoka 812-8581, Japan

E-mail: arim@i.kyushu-u.ac.jp

Sanjay Jain

National University of Singapore, School of Computing
3 Science Drive 2, Singapore 117543, Singapore
E-mail: sanjay @comp.nus.edu.sg

Arun Sharma

The University of New South Wales

School of Computer Science and Engineering
Sydney 2052, Australia

E-mail: arun@cse.unsw.edu.au

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Algorithmic learning theory : 11th international conference ;

proceedings / ALT 2000, Sydney, Australia, December 11 - 13, 2000.

Hiroki Arimura ... (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ;

Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 2000

(Lecture notes in computer science ; Vol. 1968 : Lecture notes in
artificial intelligence) ISBN 3-540-41237-9

CR Subject Classification (1998): 1.2.6,1.2.3, F.1, F2, F4.1, 1.7
ISBN 3-540-41237-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York

a member of BertelsmannSpringer Science+Business Media GmbH
© Springer-Verlag Berlin Heidelberg 2000

Printed in Germany

Typesetting: Camera-ready by author
Printed on acid-free paper SPIN: 10781103 06/3142 543210

Preface

This volume contains all the papers presented at the Eleventh International Con-
ference on Algorithmic Learning Theory (ALT 2000) held at Coogee Holiday Inn,
Sydney, Australia, 11-13 December 2000. The conference was sponsored by the
School of Computer Science and Engineering, University of New South Wales,
and supported by the IFIP Working Group 1.4 on Computational Learning The-
ory and the Computer Science Association (CSA) of Australia.

In response to the call for papers 39 submissions were received on all aspects
of algorithmic learning theory. Out of these 22 papers were accepted for pre-
sentation by the program committee. In addition, there were three invited talks
by William Cohen (Whizbang Labs), Tom Dietterich (Oregon State Univeristy),
and Osamu Watanabe (Tokyo Institute of Technology).

This year’s conference is the last in the millenium and eleventh overall in the
ALT series. The first ALT workshop was held in Tokyo in 1990. It was merged
with the workshop on Analogical and Inductive Inference in 1994. The confer-
ence focuses on all areas related to algorithmic learning theory, including (but
not limited to) the design and analysis of learning algorithms, the theory of
machine learning, computational logic of/for machine discovery, inductive infer-
ence, learning via queries, new learning models, scientific discovery, learning by
analogy, artificial and biological neural networks, pattern recognition, statistical
learning, Bayesian/MDL estimation, inductive logic programming, data min-
ing and knowledge discovery, and application of learning to biological sequence
analysis. In the current conference there were papers from a variety of the above
areas, refelecting both the theoretical as well as practical aspects of learning.
The conference was collocated with Pacific Knowledge Acquisition Workshop
and Australian Machine Learning Workshop, thus providing interesting interac-
tion between the above communities.

The E. M. Gold Award is presented to the most outstanding paper by a
student author, selected by the program committee of the conference. This year’s
award was given to Gunter Grieser for the paper “Learning of recursive concepts
with anomalies.”

We would like to thank the program committee members, Naoki Abe (NEC,
Japan), Mike Bain (Univ. of New South Wales, Australia), Peter Bartlett (Aus-
tralian National Univ., Australia), Shai Ben David (Technion, Israel), Rusins
Freivalds (Univ. of Latvia, Latvia), Nitin Indurkhya (Nanyang Tech Univ., Singa-
pore), Roni Khardon (Tufts University, USA), Eric Martin (Univ. of New South
Wales, Australia), Yasu Sakakibara (Tokyo Denki Univ., Japan), Takeshi Shino-
hara (Kyushu Inst. of Tech, Japan), Frank Stephan (Univ. of Heidelberg, Ger-
many), Osamu Watanabe (Titech, Japan), and Akihiro Yamamoto (Hokkaido
Univ., Japan) and the subreferees (listed separately) for spending their valuable
time reviewing and evaluating the papers.

VI Preface

We would also like to thank Eric Martin (Univ. of New South Wales) and
Eric McCreath (University of Sydney) for local arrangments, and the ALT Steer-
ing Committee consisting of Peter Bartlett, Klaus P. Jantke, Phil Long, Heikki
Mannila, Akira Maruoka, Luc De Raedt, Arun Sharma, Takeshi Shinohara, Os-
amu Watanabe, and Thomas Zeugmann for providing the management of the
ALT series.

December 2000 Hiroki Arimura
Sanjay Jain
Arun Sharma

Referees

Nader Bshouty
Nadav Eiron
Toshiaki Ejima
Koichi Hirata
Hiroki Ishizaka

Satoshi Kobayashi
Takeshi Koshiba
W. S. Lee

Seishi Okamoto
Wolfgang Merkle

Sponsoring Institutions

Preface VII

Tetsuhiro Miyahara
Noriko Sugimoto
Jun Takeuti
Takashi Yokomori

School of Computer Science and Engineering, The University of New South

Wales

Supporting Organizations

IFIP Working Group 1.4 on Computational Learning Theory
Computer Science Association (CSA)

Table of Contents

INVITED LECTURES

Extracting Information from the Web for Concept Learning and
Collaborative Filtering. i 1
William W. Cohen

The Divide-and-Conquer Manifesto.co ... 13
Thomas G. Dietterich

Sequential Sampling Techniques for Algorithmic Learning Theory 27
Osamu Watanabe

REGULAR CONTRIBUTIONS

Statistical Learning

Towards an Algorithmic Statistics.......... i ... 41
Peter Gdacs, John Tromp, and Paul Vitdnyi

Minimum Message Length Grouping of Ordered Data 56
Leigh J. Fitzgibbon, Lloyd Allison, and David L. Dowe

Learning from Positive and Unlabeled Examples 71
Fabien Letouzey, Francois Denis, and Rémi Gilleron

Inductive Inference

Learning Erasing Pattern Languages with Queries...................... 86
Jochen Nessel and Steffen Lange

Learning Recursive Concepts with Anomalies.......................... 101
Gunter Grieser, Steffen Lange, and Thomas Zeugmann

Identification of Function Distinguishable Languages 116
Henning Fernau

A Probabilistic Identification Result 131
Eric McCreath

ILP

A New Framework for Discovering Knowledge from Two-Dimensional
Structured Data Using Layout Formal Graph System 141
Tomoyuki Uchida, Yuko Itokawa, Takayoshi Shoudai,
Tetsuhiro Miyahara, and Yasuaki Nakamura

X Table of Contents

Hypotheses Finding via Residue Hypotheses with the Resolution
Principleo
Akihiro Yamamoto and Bertram Fronhdfer

Conceptual Classifications Guided by a Concept Hierarchy
Yuhsuke Itoh and Makoto Haraguchi

Learning Taxonomic Relation by Case-Based Reasoning.................
Ken Satoh

Complexity

Average-Case Analysis of Classification Algorithms for Boolean Functions
and Decision Trees e
Tobias Scheffer

Self-Duality of Bounded Monotone Boolean Functions and Related
Problems
Daya Ram Gaur and Ramesh Krishnamurti

Sharper Bounds for the Hardness of Prototype and Feature Selection
Richard Nock and Marc Sebban

On the Hardness of Learning Acyclic Conjunctive Queries...............
Kouichi Hirata

Neural Network and Other Paradigms

Dynamic Hand Gesture Recognition Based on Randomized Self-Organizing

Map Algorithm
Tarek El. Tobely, Yuichiro Yoshiki, Ryuichi Tsuda, Naoyuki Tsuruta,
and Makoto Amamiya

On Approximate Learning by Multi-layered Feedforward Circuits
Bhaskar DasGupta and Barbara Hammer

The Last-Step Minimax Algorithm
Eiji Takimoto and Manfred K. Warmuth

Rough Sets and Ordinal Classification
Jan C. Bioch and Viara Popova

Support Vector Machines

A Note on the Generalization Performance of Kernel Classifiers with
Margin
Theodoros Fvgeniou and Massimiliano Pontil

On the Noise Model of Support Vector Machines Regression
Massimiliano Pontil, Sayan Mukherjee, and Federico Girosi

Table of Contents XI

Computationally Efficient Transductive Machines 325
Craig Saunders, Alexander Gammerman, and Volodya Vovk

Author Index 335

Extracting Information from the Web for

Concept Learning and Collaborative Filtering
(Extended Abstract)

William W. Cohen*

WhizBang! Labs - Research
4616 Henry Street, Pittsburgh PA 15213

Abstract. Previous work on extracting information from the web gen-
erally makes few assumptions about how the extracted information will
be used. As a consequence, the goal of web-based extraction systems
is usually taken to be the creation of high-quality, noise-free data with
clear semantics. This is a difficult problem which cannot be completely
automated. Here we consider instead the problem of extracting web data
for certain machine learning systems: specifically, collaborative filtering
(CF) and concept learning (CL) systems. CF and CL systems are highly
tolerant of noisy input, and hence much simpler extraction systems can
be used in this context. For CL, we will describe a simple method that
uses a given set of web pages to construct new features, which reduce
the error rate of learned classifiers in a wide variety of situations. For
CF, we will describe a simple method that automatically collects useful
information from the web without any human intervention. The collected
information, represented as ”pseudo-users”, can be used to ”jumpstart”
a CF system when the user base is small (or even absent).

1 Introduction

A number of recent Al systems have addressed the problem of extracting infor-
mation from the web (e.g., [15,17,12,1]). Generally, few assumptions are made
about how the extracted information will be used, and as a consequence, the
goal of web-based extraction systems is usually taken to be the creation of high-
quality, noise-free data with clear semantics. This is a difficult problem, and in
spite some recent progress, writing programs that extract data from the web
remains a time-consuming task—particularly when data is spread across many
different web sites.

In this paper we will consider augmenting concept learning (CL) and col-
laborative filtering (CF) systems with features based on data automatically
extracted from the web. As we will demonstrate, extracting data for learning
systems is a fundamentally different problem than extracting data for, say, a
conventional database system. Since learning systems are tolerant of noisy data,
novel approaches to extracting data can be used—approaches which extract lots
of noisy data quickly, with little human cost.

* The work described here was conducted while the author was employed by AT&T
Labs - Research.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 1-12, 2001.
© Springer-Verlag Berlin Heidelberg 2001

2 William W. Cohen

Here we propose a simple general-purpose method that takes as input a
collection of web pages and a set of instances, and produces a set of new features,
defined over the given instances. For example, consider a learning problem in
which the instances are the names of musical artists. The generated feature
Jelassical Might be true for all instances that appear in a web page below a
header element containing the word “classical”. Other generated features might
be true for all instances that appear on particular web pages, or that appear in
particular tables or lists. When this “expansion” process is successful, adding
the new features to the original dataset can make concept learning easier: i.e.,
running a learning system on the augmented dataset will yield a lower error rate
than running the same learning system on the original dataset. Analogously,
the same features might make it easier to learn the concept “musical artists
that William likes”; this suggests that the performance of a collaborative music-
recommendation system might also be improved by the addition of these new
features.

To a first approximation, one can think of the expansion method as gener-
ating features based on a large number of automatically-generated extraction
programs. Most of the features proposed will be meaningless, but a few might
be useful, and if even a few useful features are proposed the concept learning
system may be able to improve the error rate.

Below we describe will briefly describe this expansion method, and summarize
a few relevant experimental results for some sample CL and CF tasks. More
information on these results is available elsewhere [7,8].

2 Generating features from the web

The method used for adding features to examples is motivated by a semi-
automatic wrapper generation procedure, which is described elsewhere [6]. The
expansion method takes as input a set of HTML pages P, and a set of instances
X. In the case of collaborative filtering, X would be the set of entities for which
recommendations should be made—for instance, a set of musical artists, for a
music recommendation system. For concept learning, we will assume that X in-
cludes both the training and test instances." The result of the expansion process
is to define a number of new features g1 (x),. .., gn(z) over the instances x € X.

The expansion method procedes as follows. First a set of pairs £ is initialized
to the empty set. Then, for each page p € P, the following steps are taken.

First, the HTML markup for p is parsed, generating an HTML parse tree T,.
Each node of this parse tree corresponds either to an HTML element in p, or
a string of text appearing in p. We use tezt(n) to denote the concatenation (in
order) of all strings appearing below the node n in T,—that is, the text marked
up by the HTML element corresponding to n. We use tag(n) to denote the tag
of the HT'ML element corresponding to n.

! Thus the approach described here is really a method for transduction [22] rather
than induction.

Extracting Information from the Web for Concept Learning and Collabor 3

Table 1. A simple HTML page and the corresponding parse tree.

Sample HTML page p:
<html><head>... </head>
<body>
<hl>Editorial Board Members</h1>
<table> <tr>
<td>Harry Q. Bovik, Cranberry U
<td>G. R. Emlin, Lucent
<ftr><tr>
<td>Bat Gangley, UC/Bovine
<td>Pheobe L. Mind, Lough Tech

Parse tree T);:
html(head(...),
body (
ni: h1(“Editorial Board Members”),
table(
tr(td(“Harry Q. Bovik, Cranberry U”),
td(“G.R. Emlin, Lucent”)),
tr(td(“Bat Gangley, UC/Bovine”),
td(“Pheobe L. Mind, Lough Tech”)),

Table 1 shows an example HTML page p and the corresponding parse tree
Tp,. The tree is shown in a functional notation, where the tag of a node n becomes
the functor of a logical term, and the subtrees of n become the arguments.

Next, the HTML parse tree is adjusted and analyzed. In adjusting the tree, for
each node n that has Ky, or more children corresponding to line-break (
)
elements (where K is a parameter) new child nodes are introduced with
the artificial tag line and with child nodes corresponding to elements between
the
 elements. Conceptually, this operation groups items on the same line
together in the tree 7}, under a line node, making the tree better reflect the
structure of the document as percieved by a reader. In analyzing the tree, the
scope of each header element in T}, is computed. The scope of a header is all
HTML elements that appear to be below that header when the document is
formatted.

Next, for each node n € T, such that [text(n)] < Kieze, the pair
(text(n), position(n)) is added to the set £ of “proposed expansions”. Here
position(n) is the string “u(p)tag(ag) .. . tag(a;)” where u(p) is the URL at which
the page p was found, and ag ... a; are the nodes encountered in traversing the
path from the root of T}, to n (inclusive). Using Table 1 as an example, assume
that u is the URL for p, and s is the string htmi_body_table_tr_td. Then this
step would add to & pairs like (“G. R. Emlin, Lucent”, us) and (“Bat Gangley,
UC/Bovine”, us). This step would also add many less sensible pairs as well, such

4 William W. Cohen

Table 2. Benchmark problems used in the experiments.

#example #class|#initial|#pages (Mb)|#features

features added

music 1010 20| 1600] 217 (11.7) 1890
games 791 6| 1133 177 (2.5) 1169
birdcom 915 22 674 83 (2.2) 918
birdsci 915 22| 1738 83 (2.2) 533

as (“Editorial Board Members” us’), where s’ = html_body_h1).

For CL (but not CF), an additional set of pairs are added to £. For each
node n € T, such that |text(n)| < Kiept, each header node nj, such that n is
in the scope of ny, and each word w in text(ny,), the pair (text(n),w) is added
to €. For example, in Table 1, the node ny is in the scope of ni, so the pairs
added to £ would include (“G. R. Emlin, Lucent”, “Editorial”), (“G. R. Emlin,
Lucent”, “Board”), and (“G. R. Emlin, Lucent”, “Members”), as well as many
less sensible pairs such as (“G. R. Emlin, Lucent Harry Q. Bovik, Cranberry U”,
“editorial”).

Finally, £ is used to define a new set of features as follows. Let sim(s,t) be
the cosine similarity [20] of the strings s and t.” Let 7 be the set of positions
and/or header words appearing in &: that is, T = {t : (y,t) € £}. Foreacht € T
a new feature g; is defined as follows:

gi(x) = 1iff I(y,t) € € : sim(name(x),y) > Ksim

Here name(x) is the natural-language name for . For example, if 2 is an instance
with name(xz) =“G. R. Emlin”, then the pairs computed from the sample page
mlght lead to deﬁning Geditorial (‘T) = 17 gboard(x) = 17 and Gus = 1.

3 Experimental results for CL

To apply this technique, we need each instance to include some commonly used
natural-language “name” that identifies the instance—e.g., the title of a movie,
or the name of a person. We also need to supply the expansion method with some
set of relevant web pages—preferably, pages that contain many lists and tables
that correspond to meaningful groupings of the instances, and many header
words that meaningfully describe the instances.

Four benchmark CL problems satisfying these conditions are summarized
in Table 2. In the first benchmark problem, music, the goal is to classify into
genres the musical artists appearing in a large on-line music collection. In games,
the name of a computer game is mapped to a broad category for that game
(e.g., action, adventure). In birdcom and birdsci, the name of a species of North

2 We follow the implementation used in WHIRL [5].

Extracting Information from the Web for Concept Learning and Collabor 5

music games
90 T T T T T 82 T T T T T T T
X expanded —— . expanded ——
85 text only —x— | 80 [% text only -~ 7
web only * 78 | web only *]
80 q
76 - Y —
@ b 4 @
g 7 2 74t]
s 70« 5 721 1
£ 651 g 70+t e J
68 | g 1
66 %]
557 — 64 T 3
50 L L L L T 62 L L L L L L L
0 100 200 300 400 500 600 0 50 100 150 200 250 300 350 400
#training examples #training examples
birdcom birdsci
70 T T T T T 70 T T T T T
x expanded —— expanded ——
text only - X text only -
60 [5 web only -~ b 60 - web only -~ 1
' L.
50

50 1 N\ N e]

#error rate
B
o
#error rate
B
o

30 30
20 20
10 10 =
0 100 200 300 400 500 600 0 100 200 300 400 500 600
#training examples #training examples

Fig. 1. Error rate of RIPPER on the four benchmark problems as training set
size is varied.

American bird is mapped to its scientific order. In birdcom the species name
is the common name only, and in birdsci the species names is the common
name concatenated with the scientific name (e.g., “American Robin—Turdus
migratorius”). Each dataset is naturally associated [9,8] with a set of data-rich
web pages, and in each benchmark problem, the initial representation for an
instance is just the name of the instance, represented as a “bag of words”. The
first columns of Table 2 summarize the four benchmark problems, listing for each
problem the number of examples, classes, features, and associated web pages,
and the total size of all web pages in megabytes. The final column indicates the
number of new features introduced by the expansion process.

Figure 1 shows the result of running the rule-learning system RIPPER [3,4]
on the four problems. We used various sized training sets, testing on the remain-
ing data, and averaged over 20 trials. Three representations were used for each
dataset: the original representation, labeled text only in the figure; arepresenta-

6 William W. Cohen

tion including only the features g; generated by the expansion process, labeled
web only; and the union of all features, labeled expanded. To summarize, average
error rates are generally lower with the expanded representation than with the
original text-only representation.

classical/non-classical music birdcom - variant web pages

70

f e j ' éxpanded Jp—
13 | e - T [= text only - |
3 60 x web only -~
12t expanded —— .
text only - 50 1

40 ¢

30

#error rate
-
o
#error rate

20"

10

0 50 100 150 200 250 300 350 400 0 100 200 300 400 500 600
#training examples #training examples

Fig. 2. Two problems for which expansion provides a dramatic benefit: a two-
class version of music, and a variant of birdcom with automatically-collected web

pages.

The reduction in average error associated with the expanded representation
ranges from 25% (on birdcom) to 2% (on games). We note that on these problems,
the possible improvement is limited by many factors: in the bird benchmarks,
the initial term-based representation is already quite informative; in the games
and music benchmarks, many examples are not usefully expanded; and in all
benchmarks, the large number of classes leads to a “small disjunct problem” [14]
which limits the learning rate. Figure 2 shows the learning curve for a version
of the music problem where the only classes are classical and non-classical, and
where instances not mentioned in the set of web pages were discarded. For this
problem the reduction in error rate is a more dramatic 50%. A second dramatic
reduction in error is also shown on another problem: a version of birdcom in which
the web pages used for expansion were collected by automatically crawling an
the web from an appropriate starting point. Assuming that the automatically
spidered pages would be, on average, less useful than the manually chosen ones,
we halted this crawl when 174 bird-related pages had been collected—somewhat
more than were available in the original set of pages. The automatically-crawled
pages also differ from the set of pages used in the previous experiments in that
they contain many instances of bird names organized phylogenically—that is,
using the same classification scheme that the concept learner is attempting to
discover. The leads to a huge improvement in generalization performance.

Extracting Information from the Web for Concept Learning and Collabor 7

4 Experimental results for CF

We also applied this expansion method as a preprocessor for a CF system. In CF,
entities are recommended to a new user based on the stated preferences of other,
similar users. (For example, a CF system might suggest the band ” The Beatles”
to the user "Fred” after noticing that Fred’s tastes are similar to Kumar’s tastes,
and that Kumar likes the Beatles.) Using actual user-log data, we measured the
performance of several CF algorithms. We found that running a CF algorithm
using data collected by automatically expanding the set of instances against a
set of relevant web pages was nearly as effective as using data collected from real
users, and better than using data collected by two plausible hand-programmed
web spiders.

In our experiments, we explored the problem of recommending music. The
dataset we used was drawn from user logs associated with a large (2800 album)
repository of digital music, which was made available for limited use within the
AT&T intra-net for experimental purposes. By analyzing the log, it is possible
to build up an approximate record of which musical artists each user likes to
download. We took 3 months worth of log data (June-August 1999), and split
it into a baseline training set and a test set by partitioning it chronologically,
in such a way that all users in the training and test sets were disjoint. We
constructed binary preference ratings by further assuming that a user U “likes”
an artist A if and only if U has downloaded at least one file associated with
A. We will denote the “rating” for artist A by user U as rating(U, A): hence
rating(U, A) = 1 if user U has downloaded some file associated with A and
rating(U, A) = 0 otherwise. There are 5,095 downloads from 353 users in the
test set, 23,438 downloads from 1,028 users in the training set, and a total of
981 different artists.

In evaluating the CF algorithms, we found it helpful to assume a specific
interface for the recommender. Currently, music files are typically downloaded
from this server by a browser, and then played by a certain “helper” application.
By default, the most popularly used helper-application “player” will play a file
over and over, until the user downloads a new file. We propose to extend the
player so that after it finishes playing a downloaded file, it calls a CF algorithm
to obtain a new recommended artist A, and then plays some song associated
with artist A. If the user allows this song to play to the end, then this will
be interpreted as a positive rating for artist A. Alternatively, the user could
download some new file by an artist A’, overriding the recommendation. This
will be interpreted as a negative rating for artist A, and a positive rating for
A’. Simulation with such a “smart player” can be simulated using user-log data:
to simulate a user’s actions, we accept a recommendation for A if A is rated
positively by the user (according to the log data) and reject it otherwise. When a
recommendation is rejected, we simulate the user’s choice of a new file by picking
an arbitrary positively-rated artist, and we continue the interaction until every
artist rated positively by the test user has been recommended or requested. We
define the accuracy of a simulated interaction between a CF method M and a
test user U, denoted ACC(M,U), to be the number of times the user accepts

8 William W. Cohen

a recommendation, divided by the number of interactions between the user and
the smart player.

We used several CF algorithms. Two of the best performing were K-nearest
neighbor (K-NN), one of the most widely-used CF algorithms (e.g., [13],[21]
and a novel algorithm called extended direct Bayesian prediction (XDB). XDB
algorithm was motivated by considering the optimal behavior for CF given a
single positive rating, i.e., a single artist A; that user U is known to like. As-
suming that users are i.i.d., the probability that U will like artist A; is simply
Pr(rating(U’, Aj) = 1|rating(U’, A;) = 1) where the probability is taken over
all possible users U’. This probability can be easily estimated from the training
data. XDB employs with a simple ad hoc extension of this “direct Bayesian”
recommendation scheme to later trials. Consider an arbitrary trial ¢, and let
Bi,...B;—1 be the artists that have been positively rated by U. XDB always
recommends the artist maximizing the scoring function

t—1
SCORE(A) =1 — H(l — Pr(rating(U’, A) = 1|rating(U’, B;) = 1))

j=1

We evaluated these CF algorithms on two types of data. The first was that
baseline training set, containing user ratings inferred from the user logs. The
second type of data was derived automatically from the web using the expan-
sion algorithm of Section 2: specifically, each derived feature g;(z) is handled as
if it were a user u who rates an artist “positive” exactly when g;(x) = 1. These
“pseudo-users” can be either added to set of “real” users, or else can be used
lieu of “real” users. Notice that in the latter case, the recommendation system
requires no user community to make recommendations—only a set of relevant
web-pages. The web pages used in these experiments were collected automat-
ically by a heuristic process [8] in which commercial web-search engines were
used to find pages likely to contain lists of musical artists.

As an additional baseline, we also hand-coded two recommendation systems
based on data collected from a large on-line music database, Allmusic.com. One
hand-coded system relies on genre information, and the second relies on lists of
“related artists” provided by domain experts. Details of their implementation are
given elsewhere [3]; briefly, the hand-coded systems use standard CF heuristics
to look for genres (or lists of related artists) that correlate with a user’s positive
ratings, and makes recommendations based these well-correlated sets of objects.

Results for these experiments are shown in Figure 3. The first graph com-
pares a K-NN CF system trained only on “pseudo-users” with the genre-based
recommender, the related-artist recommender, and the baseline K-NN recom-
mender (trained on the user data). We also show results for K-NN trained on
a subset of the baseline dataset including only 100 distinct users. The second
graph repeats this comparison using the XDB algorithm. To summarize, the
performance of the system trained on “pseudo-users” is much better than either
hand-coded recommendations system, but still worse than CF using the base-
line dataset. For K-NN, training on “pseudo-users” leads to a system that is
statistically indistinguishable from the 100-user dataset.

Extracting Information from the Web for Concept Learning and Collabor 9

Pseudo-users

100 Users
Pseudo-users

ox,
enres PR
Related Attists ~-=-- X x
X

P

ol Tt

- *xn

X XXX *x

> x ,
x e
*

x
7w
P

Average Accuracy for K-NN
Average Accuracy for XDB

B P .
015 - K ™ . Seoalllly 015 [y ¥ X . Seoalllly
o X P - - P LS
Ll < annngBEEDY Bognad mes ¥ aennpBBEEY EoomBad an
R LumESEEE \ LumESEEE
* e aar
\ e e e
01 E R agmmmren 1 RN S S 1
i et=te= D aet-tet=
sae sae
B B
005 8 1 005 8 1
a? a?
o o
0 s 10 15 20 25 % 8 40 45 50 0 s 10 15 20 25 % 8 40 45 50
Number of Trials Number of Trials
032 T T T T T T T T T 032 T T T T T T T T T

.

100 Users 100 Users —+—
100 Users+SPIDER ---x--- 100 Users+SPIDER ---x---

Average Accuracy for XDB
°
R

Average Accuracy for K-NN

0.12 L L L L L L L L L 0.12 L L L L L L L L L
0 5 10 15 20 25 30 35 40 a5 50 0 5 10 15 20 25 30 35 40 a5 50
Number of Trials Number of Trials

Fig. 3. CF performance with “pseudo-users”. In the top pair of graphs, perfor-
mance of pseudo-users instead of “real” users; in the bottom pairs of graphs,
performance of a system that is trained on 100 “real” users, with and without
the addition of “pseudo-users”.

The last two graphs of Figure 3 show the result of combining a 100-user train-
ing set with “pseudo-users” obtained from the web. The results are intriguing.
For both K-NN and XDB, adding pseudo-users so the undertrained CF systems
leads to a small but statistically significantly improvement. However, augment-
ing the complete user dataset with “pseudo-users” did not improve performance
for either K-NN or XDB: in both cases, performance on the combined dataset is
statistically indistinguishable from performance on the baseline training dataset
alone. This suggests that the best use for web data in CF may be to “jump start”
a recommendation system that does not yet have a substantial user population.

On this dataset, the baseline CF systems far outperform random guessing,

or recommending the most popular artists. Although XDB tends to perform
somewhat better than K-NN; the difference is not statistically significant.

10 William W. Cohen
5 Related work

There has been much prior work on deriving new features for learning. Often
called “constructive induction” , most of this prior work involves constructing new
features by combining old ones (e.g., [19,16]) or by exploiting domain knowledge
(e.g., [L1]). Here, in contrast, new features are found by exploiting unlabeled
web pages from the same domain.

There has also been prior work on learning methods that use unlabeled ex-
amples as well as labeled ones (e.g., [L8]). In this paper, however, the additional
input to the learning system is not a set of unlabeled instances, but a set of
documents that may mention the labeled instances.

This paper is most closely related to previous work of Collins and Singer
[10], who also consider constructing features based on occurances of labeled
instances. However, in their experiments, instance occurances are found in free
text, not in structured documents, and the constructed features are based on a
natural-language parse of the text around an reference to an instance. Collins
and Singer demonstrate that the extracted features can be exploited by a system
that uses “co-training” [2] to exploit the new features. This paper extends the
results of Collins and Singer by showing the utility of features extracted from
structured HTML documents, rather than parsed free text, and also shows that
more conventional learning methods can make use of these extracted features.

6 Concluding remarks

We have described a automatic means for extracting data from the web, under
the assumption that the extracted data is intended to be used by a concept
learner or collaborative filtering system. In particular, new features for a CL
system (or new “pseudo-users” for a CF system) are derived by analyzing a set
of unlabeled web pages, and looking for marked-up substrings similar to the
name of some labeled instance x. New features for x are then generated, based
on either header words that appear to modify this substring, or the position in
the HTML page at which the substring appears.

These new features improve CL performance on several benchmark prob-
lems. Performance improvements are sometimes dramatic: on one problem, the
error rate is decreased by a factor of ten, and on another, by half. Further ex-
periments [7] show that these improvements hold for many different types of
concept learners, in a wide range of conditions.

For CF systems, “pseudo-users” derived automatically from web data can im-
prove the performance of undertrained CF systems. Perhaps more interestingly,
CF systems based solely on “pseudo-users” have substantially better recommen-
dation performance than hand-coded CF systems based on data provided by
domain experts. These results suggest that collaborative filtering methods may
be useful even in cases in which there is no explicit community of users. Instead,
it may be possible to build useful recommendation systems that rely solely on
information spidered from the web.

Extracting Information from the Web for Concept Learning and Collabor 11

Acknowledgements

I thank Wei Fan for his contributions to the work on collaborative filtering.

References

10.

11.

12.

13.

14.

. Naveen Ashish and Craig Knoblock. Wrapper generation for semistructured In-

ternet sources. In Dan Suciu, editor, Proceedings of the Workshop on Manage-
ment of Semistructured Data, Tucson, Arizona, May 1997. Available on-line from
http://www.research.att.com/ suciu/workshop-papers.html. 1

Avrin Blum and Tom Mitchell. Combining labeled and unlabeled data with co-
training. In Proceedings of the 1998 Conference on Computational Learning The-
ory, Madison, WI, 1998. 10

William W. Cohen. Fast effective rule induction. In Machine Learning: Proceedings
of the Twelfth International Conference, Lake Tahoe, California, 1995. Morgan
Kaufmann. 5

William W. Cohen. Learning with set-valued features. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence, Portland, Oregon, 1996. 5
William W. Cohen. Integration of heterogeneous databases without common do-
mains using queries based on textual similarity. In Proceedings of ACM SIGMOD-
98, Seattle, WA, 1998. 4

William W. Cohen. Recognizing structure in web pages using similarity queries. In
Proceedings of the Sixteenth National Conference on Artificial Intelligence (AAAI-
99), Orlando, FL, 1999. 2

William W. Cohen. Automatically extracting features for concept learning from the
web. In Machine Learning: Proceedings of the Seventeeth International Conference,
Palo Alto, California, 2000. Morgan Kaufmann. 2, 10

William W. Cohen and Wei Fan. Web-collaborative filtering: Recommending music
by crawling the web. In Proceedings of The Ninth International World Wide Web
Conference (WWW-2000), Amsterdam, 2000. 2, 5, 8

William W. Cohen and Haym Hirsh. Joins that generalize: Text categorization
using WHIRL. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, pages 169-173, New York, NY, 1998. 5

Michael Collins and Yoram Singer. Unsupervised models for named entity classifi-
cation. In Proceedings of the Joint SIGDAT Conference on Empirical Methods in
Natural Language Processing and Very Large Corpora (EMNLP99), College Park,
MD, 1999. 10

S. Donoho and L. Rendell. Representing and restructuring domain theories: A
constructive induction approach. Journal of Artificial Intelligence Research, 2:411—
446, 1995. 10

J. Hammer, H. Garcia-Molina, J. Cho, and A. Crespo. Extracting semistructured
information from the Web. In Dan Suciu, editor, Proceedings of the Workshop
on Management of Semistructured Data, Tucson, Arizona, May 1997. Available
on-line from http://www.research.att.com/ suciu/workshop-papers.html. 1
William Hill, Lawrence Stead, M. Rosenstein, and G. Furnas. Recommending and
evaluating choices in a virtual community of use. In Proceedings of ACM CHI’95,
pages 194-201, 1995. 8

Robert Holte, Liane Acker, and Bruce Porter. Concept learning and the problem
of small disjuncts. In Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence, Detroit, Michigan, 1989. Morgan Kaufmann. 6

12

15.

16.

17.

18.

19.

20.

21.

22.

William W. Cohen

Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos. Wrapper induction
for information extraction. In Proceedings of the 15th International Joint Confer-
ence on Artificial Intelligence, Osaka, Japan, 1997. 1

Christopher J. Matheus and Larry A. Rendell. Constructive induction on decision
trees. In Proceedings of the Fighth International Workshop on Machine Learning,
Evanston, Illinois, 1989. Morgan Kaufmann. 10

Ton Muslea, Steven Minton, and Craig Knoblock. Wrapper induction for semistruc-
tured, web-based information sources. In Proceedings of the Conference on Auto-
mated Learning and Discovery (CONALD), 1998. 1

K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify text
from labeled and unlabeled documents. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98), Madison, WI, 1998. 10

Giulia Pagallo and David Haussler. Boolean feature discovery in empirical learning.
Machine Learning, 5(1), 1990. 10

Gerard Salton, editor. Automatic Text Processing. Addison Welsley, Reading,
Massachusetts, 1989. 4

U. Shardanand and P. Maes. Social information filtering: algorithms for automating
'word of mouth’. In Proceedings of ACM CHI’95, 1995. 8

Vladimir Vapnik. Statistical Learning Theory. Wiley and Sons, New York, 1998.
2

The Divide-and-Conquer Manifesto

Thomas G. Dietterich

Oregon State University
Corvallis, OR 97331, USA
tgd@cs.orst.edu
http://www.cs.orst.edu/"tgd

Abstract. Existing machine learning theory and algorithms have fo-
cused on learning an unknown function from training examples, where
the unknown function maps from a feature vector to one of a small
number of classes. Emerging applications in science and industry require
learning much more complex functions that map from complex input
spaces (e.g., 2-dimensional maps, time series, and strings) to complex
output spaces (e.g., other 2-dimensional maps, time series, and strings).
Despite the lack of theory covering such cases, many practical systems
have been built that work well in particular applications. These systems
all employ some form of divide-and-conquer, where the inputs and out-
puts are divided into smaller pieces (e.g., “windows”), classified, and
then the results are merged to produce an overall solution. This pa-
per defines the problem of divide-and-conquer learning and identifies the
key research questions that need to be studied in order to develop practi-
cal, general-purpose learning algorithms for divide-and-conquer problems
and an associated theory.

1 Introduction

The basic supervised learning task is to find an approximation kA to an unknown
function f given a collection of labeled training examples of the form (x,y),
where x is a fixed-length vector of features and y = f(z) is a class label or
output value (e.g., drawn from a small number of discrete classes or an interval
of the real line). In the theory of supervised learning, these training examples are
assumed to be produced by independent draws from some underlying probability
distribution.

However, when we look at current and emerging applications of machine
learning, we find the situation is much more complex. The x values—instead of
being fixed-length vectors—are often variable-length objects such as sequences,
images, time series, or even image time series (e.g., movies, sequences of aerial
photos taken over several years). The y values may be similarly complex se-
quences, images, or time series. Let us consider a few examples.

Example 1: Text-to-Speech. A famous demonstration of machine learning is
the problem of mapping spelled English words into speech signals, as in the
NETtalk system (Sejnowski & Rosenberg, 1987). Each training example is an
English word (e.g., “enough”) along with an aligned phonetic transcription (e.g.,

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 13-26, 2001.
© Springer-Verlag Berlin Heidelberg 2001

14 Thomas G. Dietterich

“In~-f-”) and an aligned stress transcription (e.g, “0>1<<<”). This is a case in
which both the x and the y values are variable-length sequences.

Example 2: Grasshopper Infestation Prediction. We have been studying the
problem of predicting future infestations of grasshoppers in Eastern Oregon
based on a map of the adult grasshopper population in the previous year and
the daily weather during the fall, winter, and spring (Bunjongsat, 2000). In this
case, each training example is a two-dimensional population map coupled with
a time series of daily weather maps, and the output is another two-dimensional
map.

Example 3: Fraud detection in transactions. Many applications of machine
learning involve analyzing time series of transactions (e.g., telephone calls, insur-
ance claims, TCP connection attempts) to identify changes in behavior associ-
ated with fraudulent activity (Fawcett & Provost, 1997). This can be formalized
as a problem of mapping an input sequence of transactions to an output sequence
of alarms.

Example 4: Finding all volcanoes on Venus (Burl, Asker, Smyth, Fayyad,
Perona, Crumpler, & Aubele, 1998). Many visual applications involve scanning
images to identify objects of scientific interest (volcanoes, bacteria) and estimate
relevant properties (location, volume, age). In this case, the input is a two-
dimensional map of pixels and the output is a two-dimensional map of detected
objects (and their predicted properties).

To solve these kinds of complex problems, practitioners have applied varia-
tions on the venerable “divide and conquer” schema. Viewed abstractly, every
divide-and-conquer method consists of three steps: (a) divide (divide the orig-
inal problem into subproblems), (b) conquer (solve the subproblems, possibly
recursively), and (c) merge (merge the subproblem solutions into a solution for
the original problem).

To apply this schema in machine learning, the x and y values are decomposed
into “windows” or “regions”, individually classified, and then merged to provide a
classification decision for the original problem. For example, in the NETtalk task,
the problem of predicting the entire phoneme sequence (and stress sequence) is
divided into the subproblem of predicting each individual phoneme. To predict
y(i), the ith phoneme (and stress) of a word, a 7-letter window of the input,
from z(i — 3) to (i + 3), is used to extract a set of input features. To map an
entire word from text to phonemes, we must separately predict the phoneme and
stress of each letter and then concatenate them.

Similarly, for the grasshopper task, one approach is to define a grid of cells
and try to predict the grasshopper population within each cell using as input
the previous year’s population and weather in that cell and neighboring cells.
To construct a prediction map for each year, a prediction is made within each
cell and then those predictions are concatenated to get the whole map.

In both of these examples, the merge step was a trivial concatenation, but
more sophisticated versions of both problems employ complex merge steps. For
example, in our decision tree text-to-speech system (Bakiri & Dietterich, 2000),
we developed a “recurrent” classifier that constrained the allowable predictions

The Divide-and-Conquer Manifesto 15

for each subproblem based on the predictions of other subproblems. Specifically,
we scanned each word from back-to-front, and the results of earlier predictions
were used as input features to constrain subsequent predictions. This strategy
enabled us to correctly pronounce word pairs such as “photograph” and “pho-
tography”, even though they differ only in the last letter.

CORNCI RN CORNNCO NN CD

Fig. 1. Belief network representation of a hidden Markov model.

One of the most well-developed “merge methods” is based on Markov model-
ing (Bengio, 1999; Jelinek, 1999). Figure 1 shows a belief network representation
of a hidden Markov model (HMM). Each of the hidden nodes S; (except Si)
stores a transition probability distribution of the form P(S;|S;_1), and each ob-
served node X; stores an emission probability distribution of the form P(X;|S;).
An HMM is a stochastic finite state automaton that can be used to generate or
recognize strings. To generate a string, state Sp is chosen according to P(S7),
and then the first output X; is chosen according to P(X7]S1). Then the sec-
ond state Sy is generated according to P(S2]S1) and so on. Only the X;’s are
observed in the training and test data.

We can view the HMM as a divide-and-conquer method in which the base
classifier is represented by P(X;|S;) (which can be inverted by Bayes theorem
to give P(S;|X;), which assigns a class label S; to the observed value X;) and
the merge method is represented by P(S;|S;—1). To merge a series of individual
decisions, standard belief propagation methods can be applied to find the most
likely sequence of states Si,S9,...,.5, that could have generated the observed
data Xl,XQ, . ,Xn.

In speech recognition, for example, the problem is to map a speech signal into
an English sentence. In this application, the hidden states of a hidden Markov
model describe the temporal structure of English (i.e., what words can follow
what other words, what phones can follow what other phones), and the emission
probabilities can be viewed as naive Bayesian classifiers (or gaussian mixture
classifiers) for deciding which phone generated each frame. One of the great
virtues of the hidden Markov model is that both the base classifier and the
merge step are trained jointly. This is in contrast to most other divide-and-
conquer methods, where the base learning algorithm is trained independently of
the merging process.

16 Thomas G. Dietterich

In recent years, many groups, particularly in speech recognition, have ex-
plored hybrid architectures where some other classifier (e.g., decision tree, neural
network) is used in place of the emission probabilities of the HMM (Lippmann
& Gold, 1987; Franzini, Lee, & Waibel, 1990; Bengio, De Mori, Flammia, &
Kompe, 1992; Bourlard & Morgan, 1993). This permits a richer model of local
interactions than the usual naive Bayes model, and that has led to success in
such applications as online handwriting recognition (Bengio, Le Cun, & Hender-
son, 1994), molecular biology (Haussler, Krogh, Brown, Mian, & Sjélander, 1994;
Baldi & Brunak, 1998), and part-of-speech tagging (Marquez, 1999; Marquez,
Padré, & Rodrfguez, 2000), as well as in speech recognition.

2 Research Issues in Divide-and-Conquer Learning

When applying a divide-and-conquer approach, there are six key design decisions
that must be made: (a) output scale, (b) input scale, (¢) alignment of outputs
and inputs, (d) decomposition of the loss function, (e) base learning algorithm,
and (f) merge method.

The output scale is the size of the regions or segments into which y is divided.
For example, in our text-to-speech research (Bakiri & Dietterich, 2000), we chose
to predict individual letters. But perhaps predicting pairs of letters would have
been more effective, since some pairs of letters have highly predictable pronoun-
ciations (e.g., “st”, “ck”, and so on). Although we ran hundreds of experiments,
we did not run this particular experiment. In our grasshopper study, we chose
to predict the presence or absence of infestation in grid cells that were 10km on
a side. Was this the correct size? We did not have time to test other grid sizes,
so we do not know.

The input scale is the size of the input “window” that will be supplied as
input to the base level classifier. In the original NETtalk system, Sejnowski and
Rosenberg employed a 7-letter window. Bakiri (1991) performed an exhaustive
series of experiments and found that a 15-letter window gave the best results.
In our grasshopper domain, the input scale was a 30x30km square region, but
other sizes may have been better.

The third decision involves how to align the output windows with the input
windows. In the NETtalk domain, Sejnowski and Rosenberg manually inserted
silent phonemes into the output phoneme string so that there was a direct 1:1
correspondence between input letters and output phonemes. But in many appli-
cations, the outputs and inputs are not pre-aligned. Lucassen and Mercer (1984)
and Ling (1997) have both studied automatic alignment mechanisms for speech
generation. Similarly, speech recognition systems typically employ forced Viterbi
alignment to align the output words and phones with the input windows. Start-
ing with a small set of aligned data, they train an initial HMM. Then this HMM
is applied to unaligned data to find the most likely assignment of the given out-
put words and phones to the input windows. This alignment is assumed to be
correct, and it is then used as additional input data for training a new HMM.

“

The Divide-and-Conquer Manifesto 17

The fourth decision involves how to decompose the overall loss function into a
loss function that can be applied in the base case. The loss L(g, y) is the penalty
incurred when the learned mapping h predicts § = h(x), but the true answer
is y = f(z). For example, in the grasshopper prediction task, the loss suffered
when we fail to predict a grasshopper infestation is the cost of the resulting crop
damage, and the loss suffered when we predict an infestation (rightly or wrongly)
is the cost of spraying pesticides. This loss function decomposes perfectly into
loss functions for any particular output scale, because the total loss over the
entire region is the sum of the loss at each location. Such perfect decomposition
means that the global loss function can be minimized by minimizing the local
loss function using the base learning algorithm.

Unfortunately, in most complex learning problems, the loss function does not
decompose so simply. Consider, for example, the problem of speech recognition.
Here the goal is to identify the entire sentence correctly, so a loss of 1 is incurred
if any word in the sentence is wrong (with a loss of 0 if no words are wrong).
However, this does not decompose perfectly into a loss function for classifying
each phone. In fact, as long as the maximum likelihood path through the HMM
passes through the correct sequence of words, it does not matter whether every
phone was correctly classified individually.

The loss function in fraud detection problems depends on the financial losses
incurred by the fraudulent activity. This in turn is related to the amount of
time between the start of fraudulent behavior and the time when the learned
classifier raises an alarm. There is also typically a high cost to false alarms
as well. This loss function is difficult to decompose into loss functions for the
individual windows because only the first alarm in an episode matters.

The loss function for detecting volcanoes on Venus is also complex. If a
volcano is detected in a slightly incorrect position, this is not a serious error.
But detecting the same volcano at adjacent positions is an error (because each
volcano should be detected only once), and so is the failure to detect a volcano at
all. Hence, the definition of “correctly detecting a volcano” is not purely local—it
depends on the results of several classification decisions in the neighborhood of
the true volcano location. An additional complicating factor is that the training
data (expert-labeled maps of “training regions” on Venus) is believed to contain
volcanoes that were missed by the experts—inter-expert agreement is not very
high.

The fifth decision involves choosing (or designing) the learning algorithm for
solving the “base case” of the divide-and-conquer schema. Traditionally, stan-
dard machine learning methods have been applied here. However, many of the
assumptions underlying those methods are violated in the divide-and-conquer
setting: the training examples are no longer independent and identically dis-
tributed (iid) and the objective is not to maximize the percentage of correct
classification decisions but instead to provide the most useful information to the
merge step.

The merge method is perhaps the most important of these six decisions.
This is the choice of how to merge the solutions of the individual subproblems

18 Thomas G. Dietterich

to produce a solution to the overall problem. In the literature, many methods
have been applied including simple concatenation (as in NETtalk), feeding the
outputs through a second “merge” network (as in Qian and Sejnowski’s (1988)
protein structure prediction system), learning a recurrent classifier (as described
above), and employing hidden Markov models (as described above) to find the
most likely merged solution.

These six design decisions provide an agenda for machine learning research
on divide-and-conquer problems. The goal of this research will be to study each
of these design decisions, understand how the decisions interact, and develop
methods for making them automatically.

In this paper, we will not address all six of these problems. Instead, we focus
only on the input scale, the output scale, and the merge method.

3 Factors Affecting the Design of Divide-and-Conquer
Systems

We begin with an analysis of the main factors that influence the choice of output
scale, input scale, and merge method. The most important factor is the extent
to which neighboring y(¢) values are correlated even after accounting for the in-
formation provided by the predictor x values. To make the discussion concrete,
suppose that we are classifying each pixel of an image into one of two classes
based on the measured red, green, and blue intensities of each pixel (the x values).
Suppose the output scale is a single pixel, so y(i) refers to the class of one pixel
and z(i) is a vector of the red, green, and blue intensities. Consider the condi-
tional joint probability distribution P(y(1),y(2)|z(1),z(2)) of two adjacent pix-
els. Suppose that this can be perfectly factored into P(y(1)|z(1)) - P(y(2)|=(2)).
Figure 2(a) shows a belief network for this case. In this case, we can choose the
output scale to be one pixel (i.e., y(7)), because the only way that y(¢) and y(j)

are correlated is through the correlations of (1) and z(2).

§d & 84 84

(d
Fig. 2. Belief networks representing four architectures for divide-and-conquer
systems.

However, now suppose that there is some additional correlation between y(1)
and y(2) that cannot be accounted for by the correlation between x(1) and z(2).

The Divide-and-Conquer Manifesto 19

In this case, the joint distribution P(y(1),y(2)|z(1),2(2)) does not factor. There
are at least three ways to handle this. First, we can increase the output scale to
include both y(1) and y(2) (and the input scale to include x(1) and 2(2)). This
is equivalent to defining a new output variable y’ which takes on four possible
values corresponding to the four possible labels of y(1) and y(2) (see Figure 2(b)).

Second, we could apply the chain rule of probability and write the P(y(1), y(2)
| (1), z(2)) distribution as P(y(1)]z(1)) - P(y(2)|z(2),y(1)) (where we have also
assumed that y(1) does not depend on z(2).) This suggests a recurrent solution
in which we first predict the value of y(1) using (1), and then use this predicted
value along with z(2) to predict y(2) (see Figure 2(c)).

The third approach is to model the relationship between y(1) and y(2) as a
hidden Markov model (see Figure 2(d)), using hidden states s(1) and s(2).

This simple analysis shows that there is a tight connection between the choice
of the output scale and the choice of the merge method. If we are merging the
individual decisions via an HMM, we can use a smaller output scale (Figure 2(c)
and (d)) than if we are merging by concatenating the independent classifications
(as in Figure 2(b)), because the HMM captures the correlations between the y
values that would otherwise need to be captured by a larger output scale.

The analysis also suggests that if the input scale is too small, the output
scale may need to be larger or the merge step may need to be more complex.
The reason is that if the input scale does not capture all of the correlations
among the (i) values, then there will be “induced” correlations among the y(7)
values. For example, if y(1) depends directly on both 2(1) and 2(2), but the base
classifier ignores z(2), then this will create an added dependency between y(1)
and y(2) (because y(2) depends on x(2)).

A second factor affecting the choice of input and output scale is the amount
of noise in the z(7) and y(i) values. Large noise levels (for a fixed amount of input
data) require high degrees of smoothing and aggregation. This is a consequence of
the well-known bias-variance tradeoff. Noisy training data leads to high variance
and hence, to high error rates. The variance can often be reduced by imposing a
smoothing or regularizing process. In temporal and spatial data, it is natural to
apply some form of temporally- or spatially-local smoothing, since we normally
assume that the underlying = and y values are changing smoothly in space and
time. One way of imposing local smoothing is to use a larger output scale. Con-
sider again the example from Figure 2(b), where we introduced a new variable ¢/’
that took on four values {00,01, 10, 11} corresponding to the four possible pairs
of labels for y(1) and y(2). We can impose spatial smoothing by constraining y’
to only two possible values {00,11}. In other words, the larger output scale is
constraining y(1) = y(2). A similar constraint can also be imposed through the
merge techniques shown in Figure 2(c) and (d). These constraints can be made
“soft” through Bayesian methods. For example, rather than banning the 01 and
10 values for 3, we can just impose a penalty for using them by assigning them
lower prior probability. In addition to building a smoothness constraint into the
model, we can also impose smoothness by preprocessing the data to smooth the
y values prior to running the base learning algorithm.

20 Thomas G. Dietterich

If there is noise in the input data, then this usually requires a larger input
scale, so that the base classifier can aggregate a larger number of inputs to
overcome the noise. Again, we can also consider smoothing the input data prior
to running the base classifier (e.g., by modelling the process by which noise is
added to the data as a Markov random field (a 2-D Markov process) and then
finding the maximum aposteriori probability estimate of the true data given the
observed data).

A third fundamental issue influencing the choice of the merge step is the
direction of causality. In standard supervised learning and in learning belief
networks, there is a growing body of evidence that suggests that learning is most
efficient (statistically) when the model being fit to the data matches the direction
of underlying causality. In such cases, the model can usually be parameterized
using a small number of parameters, and consequently, less data is needed to fit
those parameters.

Let us consider the direction of causality in the three merge methods sketched
above. If we treat y(1) and y(2) as in Figure 2(b) or (d), we are assuming
that there is no particular direction of causality between them. If we employ a
recurrent method, we are assuming that a label for y(1) is chosen first, and then it
is used to help choose a label for y(2). This direction of causality is typically more
appropriate for time-series data than for spatial data or biological sequence data.
This suggests that the choice of merge method in a particular application should
depend primarily on domain knowledge about the likely direction of causality in
the problem.

4 An Experimental Study

We now describe an experimental study of the tradeoff between using a large
input scale with a simple merge method and using a small input scale with the
more complex HMM merge method. To generate the training and test data, we
employed a hidden Markov model of the kind shown in Figure 1. In this data,
each S; is a boolean class variable that is observed in the training data and
hidden (and hence, predicted) in the test data. Each X is a vector of 10 boolean
variables (z;0,...,%i9) generated by a simple Naive Bayes model (i.e., there is
a separate probability distribution P(z; ;|S;) that generates each z; ; depending
on the value of S;), and these are observed in both the training and test data.
We will choose the transition probability distribution P(S;11]S;) and the output
probability distributions P(x; ;|S;) to be stationary (i.e., the same for all values
of 7).

Given that we have generated training data according to this HMM, we wish
to compare three learning algorithms. The first algorithm is “optimal” in the
sense that it learns an HMM of exactly the same structure as the true HMM
that generated the data. It is trivial to directly learn the HMM, because all of
its random variables are observed in the training data. To classify test exam-
ples using the learned HMM, we must apply the forward-backward algorithm
to compute P(S;|X1,...,Xn) for each S;. The forward-backward algorithm can

The Divide-and-Conquer Manifesto 21

be viewed as a combination of two separate algorithms. The forward algorithm
processes the sequence from left-to-right, and for each ¢, it can be viewed as
computing P(S;| X1, ..., X;), which is the probability of the ith class label given
the sequence seen so far. The backward algorithm processes the sequence from
right-to-left, and for each 4, it can be viewed as computing P(S;| X;11,...,XnN).
At each node i, these two probability distributions can be multiplied together
and appropriately normalized to obtain P(S;| X1, ..., Xn). (Note: This is a non-
standard description of the forward-backward algorithm. The reader is referred
to (Baldi & Brunak, 1998; Jelinek, 1999) for more rigorous and detailed descrip-
tions.)

The second algorithm is just the forward part of the forward-backward al-
gorithm. The reason to study this method is that it is similar to the kind of
“recurrent” algorithm that Bakiri and Dietterich employed in the text-to-speech
task. The results of classifying X values earlier in the sequence are used as inputs
to classify later values.

The third algorithm applies the standard Naive Bayes classifier to predict
each S; independently. In other words, it assumes that each pair (X;, S;) is gen-
erated independently from the same distribution according to the probabilities
P(S;) and P(x; ;|S;). We will call this third algorithm, iid-Bayes, and we will
allow it to use wide input windows as follows. An input window of width 3 uses
Xi—1, X;, and X1 to predict the value of S;. Since this is a Naive Bayes classi-
fier, it does this by learning probability distributions of the form P(xy ;|S;), for
all jand all k € {i — 1,4,i+ 1}.

In our experiments, we choose the distribution P(5;|S;—1) to have a symmet-
ric form such that the class changes with probability § and remains the same
with probability 1 — 6. When 6 = 0.5, this means that the individual (X;,S;)
pairs are generated independently and identically. But when § is small, adjacent
values of S; are highly correlated.

Our experiments consisted of 100 trials. In each trial, we applied the HMM
to randomly generate a training set and a test set, each containing 10 sequences
of length 50. The probability distribution P(S7) was the uniform distribution.

Figure 3 shows the results of varying § across a range from 0.01 to 0.50
while using a window size of 1 for iid-Bayes. We see that when § = 0.5, the three
algorithms give the same performance, but as § becomes small, the methods that
explicitly model the dependency between the S; values perform much better. The
forward-backward algorithm gives the best results, of course, but the forward
algorithm does quite well. The lesson of this experiment is that it is a mistake
to ignore the dependencies between adjacent windows!

Figure 4 shows the results of varying the window size of iid-Bayes. When §
is very small, iid-Bayes can obtain excellent performance by using a very wide
window. The reason, of course, is that the wide window captures the correlations
between adjacent S; values indirectly by exploiting the resulting correlations
between the X; values. However, when ¢ approaches 0.5, these large windows
perform poorly, because now they are overfitting the data. Furthermore, the
larger the window, the greater the opportunity for overfitting, and hence, the

22 Thomas G. Dietterich

Percent Correct

100

98

96

94

92

90

88

86

84

82

"\ forward-backward

Il Il
01 015 02 025 03 035 04 045 05
Probability of Changing Classes

Fig. 3. A comparison of the percentage of correct predictions on the test data
for the forward-backward algorithm, the forward algorithm, and the iid-Bayes(1)
algorithm for different values of §.

Percent Correct (test set)

100

98

9

94

92

90

88

86

84

82

80

iid w=7
iid w=5

iid w=3

iid w=1

forward-backward

0.1 0.2 0.3 0.4 0.5
Probability of Changing Class

Fig. 4. Test-set performance of iid-Bayes for different input window sizes com-
pared against the forward-backward algorithm.

The Divide-and-Conquer Manifesto 23

worse the performance. Hence, we can see that a window size of 7 gives the
best iid-Bayes performance for ¢ from 0 to 0.08. A window size of 5 gives the
best performance for ¢ from 0.08 to 0.19. A window size of 3 gives the best
performance for § for 0.19 to 0.42. And for § > 0.42, a window size of 1 gives
the best performance.

The lesson of this experiment is that the proper choice of input scale de-
pends on the strength of correlation between adjacent S; values, even when that
correlation is a first-order Markov process. Another lesson is that there is an
overfitting cost to using wide windows when they are inappropriate.

We performed a third experiment to see what happens when the temporal
dependency model in the HMM is incorrect. We took each training example and
re-ordered the individual (X;,S;) pairs to have the following order: (X7,S51),
(XQG, 526); (XQ, Sg), ()(277 527), ey ()(257 525), (X50, 550). HOWQVGI, the HMM
learning algorithm still applied the (now incorrect) HMM from Figure 1 to fit
the data.

94 T
iidw=5
92 + E
\\\

90 \ i
= \
2
= 88 F markov E
8
=
)
e 86]
=
8
5}
[

iid w=3
84 + \ .

80 Il Il Il Il Il
-0.1 0 0.1 0.2 0.3 0.4 0.5
Probability of Changing Class (alternating)

Fig. 5. Comparison of HMM and iid-Bayes on shuffled data, where the HMM
model does not correctly capture the sequential dependencies in the data.

Figure 5 compares the performance of this incorrect Markov model with the
iid-Bayes model for various settings of §. We see that now iid-Bayes with a
window size of 5 is able to do much better than the HMM, because a window
size of 5 is large enough to capture the dependencies between S; and S;_5 and
Sit2, whereas the first-order HMM cannot capture these dependencies. Notice
that the first-order HMM gives essentially the same performance as iid-Bayes

24 Thomas G. Dietterich

with a window size of 1 with the exception of very small values for §. At these
very small values for d, there is a non-trivial correlation between S; and S; 25,
so even a first-order HMM can capture some useful information. It is interesting
that iid-Bayes with a window size of 3 also captures some of this information,
but because of overfitting, it performs uniformly worse than the HMM.

This simple experimental study shows that if you have a correct model of the
temporal dependencies in sequential data, then the HMM (forward-backward)
approach to divide-and-conquer problems is the best method to apply. Sliding
window methods that rely on a wide input window and a trivial merge step
perform almost as well, but the window size must be adjusted depending on the
strength of the temporal correlations. Finally, if you have an incorrect model of
the temporal correlations, then the HMM method is much less robust, and the
sliding window iid-Bayes approach gives superior results.

5 Concluding Remarks

Emerging applications of machine learning require algorithms that can learn
mappings from complex input spaces to complex output spaces. A natural ap-
proach to solving such problems is to employ some form of divide-and-conquer.
However, there are many difficult decisions that must be made in designing a
divide-and-conquer learning system: (a) the input scale, (b) the output scale,
(c) alignment of inputs and outputs, (d) decomposition of the loss function, (e)
the base learning algorithm, and (f) the merge method. These design decisions
interact in complex ways.

We presented a simple theoretical analysis which suggests that the input and
output scales interact with the choice of merge method. Our experimental study
verified this for the simple case in which the data was generated by an HMM.
If we applied an HMM classifier, the input scale and output scale could both be
1. But if applied a Naive Bayes classifier and merged by simple concatenation,
then we needed much larger input scales.

Researchers in speech recognition have had the most experience with learn-
ing complex mappings, and their HMM-based techniques appear very promising
for explicitly representing temporal constraints. However, our study also showed
that if the assumptions of the model (e.g., of first-order Markov interactions)
is wrong, then HMM-based methods will perform very poorly, while large in-
put windows are more robust. This is consistent with work combining neural
networks (and wide input windows) with HMMs to overcome some of the mod-
eling shortcomings of HMMs. It will be interesting to see how well other learn-
ing algorithms, such as tree- and rule-learning methods, can be combined with
HMM-based merge procedures.

I hope this paper will encourage machine learning researchers to mount a
systematic attack on the problems of divide-and-conquer learning. We are in
the midst of a machine learning revolution, as the learning algorithms devel-
oped over the last 20 years are becoming widely applied in industry and science.
However, many of the new applications of machine learning are complex, and

require divide-and-conquer methods. Rather than continue the current trend of
constructing ad hoc divide-and-conquer systems, we need to study these complex
problems and develop learning algorithms specifically tailored to them. One can
imagine a divide-and-conquer toolkit in which it would be easy to (a) describe the
temporal and spatial structure of complex input and output data, (b) represent
the global loss function of the application, and (¢) automatically construct and
train a divide-and-conquer architecture. As machine learning moves beyond sim-
ple classification and regression problems, complex divide-and-conquer methods
are one of the most important new directions to pursue.

Acknowledgements

I wish to thank Dragos Margineantu for many conversations which helped refine
the ideas presented in this paper. The author gratefully acknowledges the support
of NSF grant 9626584-IRI.

Bibliography

Bakiri, G. (1991). Converting English text to speech: A machine learning ap-
proach. Tech. rep. 91-30-2, Department of Computer Science, Oregon State
University, Corvallis, OR.

Bakiri, G., & Dietterich, T. G. (2000). Achieving high-accuracy text-to-speech
with machine learning. In Damper, R. I. (Ed.), Data Mining Techniques
in Speech Synthesis. Chapman and Hall, New York, NY.

Baldi, P., & Brunak, S. (1998). Bioinformatics, the Machine Learning Approach.
MIT Press.

Bengio, Y. (1999). Markovian models for sequential data. Neural Computing
Surveys, 2, 129-162.

Bengio, Y., De Mori, R., Flammia, G., & Kompe, R. (1992). Global optimization
of a neural-network hidden Markov model hybrid. IFEFE Transactions on
Neural Networks, 3(2), 252-258.

Bengio, Y., Le Cun, Y., & Henderson, D. (1994). Globally trained handwrit-
ten word recognizer using spatial representation, convolutional neural net-
works, and hidden Markov models. In Cowan, J. D., Tesauro, G., & Al-
spector, J. (Eds.), Advances in Neural Information Processing Systems,
Vol. 6, pp. 937-944. Morgan Kaufmann, San Francisco.

Bourlard, H., & Morgan, N. (1993). Connectionist Speech Recognition: A Hybrid
Approach. Kluwer.

Bunjongsat, W. (2000). Grasshopper infestation prediction: An application of
data mining to ecological modeling. Tech. rep., Department of Computer
Science, Oregon State University. MS Project Report.

Burl, M. C., Asker, L., Smyth, P., Fayyad, U., Perona, P., Crumpler, L., &
Aubele, J. (1998). Learning to recognize volcanoes on Venus. Machine
Learning, 30(2/3), 165-194.

26 Thomas G. Dietterich

Fawcett, T., & Provost, F. (1997). Adaptive fraud detection. Knowledge Dis-
covery and Data Mining, 1, 291-316.

Franzini, M., Lee, K., & Waibel, A. (1990). Connectionist Viterbi training: a
new hybrid method for continuous speech recognition. In International
Conference on Acoustics, Speech, and Signal Processing, pp. 425-428.

Haussler, D., Krogh, A., Brown, M., Mian, S., & Sj6lander, K. (1994). Hidden
Markov models in computational biology: Applications to protein model-
ing. Journal of Molecular Biology, 235, 1501-1531.

Jelinek, F. (1999). Statistical methods for speech recognition. MIT Press.

Ling, C. X., & Wang, H. (1997). Alignment algorithms for learning to read aloud.
In Proceedings the Fifteenth International Joint Conference on Artificial
Intelligence (IJCAI-97), pp. 874-879.

Lippmann, R. P., & Gold, B. (1987). Neural classifiers useful for speech recogni-
tion. In TEEFE Proceedings of the First International Conference on Neural
Networks, Vol. IV, pp. 417-422.

Lucassen, J. M., & Mercer, R. L. (1984). An information theoretic approach to
the automatic determination of phonemic base forms. In Proceedings of
the International Conference on Acoustics, Speech, and Signal Processing,
ICASSP-8, pp. 42.5.1-42.5 4.

Marquez, L. (1999). Part-of-speech Tagging: A Machine Learning Approach
Based on Decision Trees. Ph.D. thesis, Department de Llenguatges i Sis-
temes Informatics, Universitat Politecnica de Catalunya.

Marquez, L., Padré, L., & Rodrfguez, H. (2000). A machine learning approach
to POS tagging. Machine Learning, 39(1), 59-91.

Qian, N., & Sejnowski, T. J. (1988). Predicting the secondary structure of glob-
ular proteins using neural network models. Journal of Molecular Biology,
202, 865-884.

Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks that learn to
pronounce English text. Complex Systems, 1, 145-168.

Sequential Sampling Techniques for Algorithmic
Learning Theory

Osamu Watanabe

Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology
Tokyo 152-8552, Japan
watanabe@is.titech.ac. jp

Abstract. A sequential sampling algorithm or adaptive sampling algo-
rithm is a sampling algorithm that obtains instances sequentially one
by one and determines from these instances whether it has already seen
enough number of instances for achieving a given task. In this paper,
we present two typical sequential sampling algorithms. By using simple
estimation problems for our example, we explain when and how to use
such sampling algorithms for designing adaptive learning algorithms.

1 Introduction

Random sampling is an important technique in computer science for develop-
ing efficient randomized algorithms. A task such as estimating the proportion
of instances with a certain property in a given data set can often be achieved
by randomly sampling a relatively small number of instances. Sample size, i.e.,
the number of sampled instances, is a key factor for sampling, and for determin-
ing appropriate sample size, so called concentration bounds or large deviation
bounds have been used (see, e.g., [9]). In particular, the Chernoff bound and the
Hoeffding bound have been used commonly in theoretical computer science be-
cause they derive a theoretically guaranteed sample size sufficient for achieving
a given task with given accuracy and confidence. There are some cases, however,
where these bounds can provide us with only overestimated or even unrealistic
sample size. In this paper, we show that “sequential sampling algorithms” are
applicable for some of such cases to design adaptive randomized algorithms with
theoretically guaranteed performance.

A sequential sampling algorithm or adaptive sampling algorithm is a sam-
pling algorithm that obtains instances sequentially one by one and determines
from these instances whether it has already seen enough number of instances for
achieving a given task. Intuitively, from the instances seen so far, we can more or
less obtain some knowledge on the input data set, and it may be possible to es-
timate an appropriate sample size. Recently, we have proposed [7,8] a sequential
sampling algorithm for a general hypothesis selection problem (see also [(] for
some preliminary versions). Our main motivation was to scale up various known
learning algorithms for practical applications such as data mining. While some
applications and extensions of our approach towards this direction have been

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 27-40, 2001.
© Springer-Verlag Berlin Heidelberg 2001

28 Osamu Watanabe

reported [1,4,19], it has been also noticed [3,5] that sequential sampling allows
us to add “adaptivity” to learning algorithms while keeping their worst-case
performance. In this paper, we use some simple examples and explain when and
how to use sequential sampling for designing such adaptive learning algorithms.

The idea of “sampling on-line” is quite natural, and it has been studied in
various contexts. First of all, statisticians made significant accomplishments on
sequential sampling during World War II [21]. In fact, from their activities, a
research area on sequential sampling — sequential analysis — has been formed
in statistics. Thus, it may be quite likely that some of the algorithms explained
here have been already found in their contexts. (For recent studies on sequential
analysis, see, e.g., [10,11].) In computer science, sequential sampling techniques
have been studied in the database community. Lipton and Naughton [16] and
Lipton etal [15] proposed adaptive sampling algorithms for estimating query size
in relational databases. Later Haas and Swami [20] proposed an algorithm that
performs better than the Lipton-Naughton algorithm in some situations. More
recently, Lynch [17] gave a rigorous analysis to the Lipton-Naughton algorithm.
Roughly speaking, the spirit of sequential sampling is to use instances observed so
far for reducing a current and future computational task. This spirit can be found
in some of the learning algorithms proposed in machine learning community.
For example, the Hoeffding race proposed by Maron and Moore [18] attempts
to reduce a search space by removing candidates that are determined hopeless
from the instances seen so far. A more general sequential local search has been
proposed by Greiner [12].

All the above approaches have more or less share the same motivation. That
is, they attempts to design “adaptive algorithms” that can make use of the
advantage of the situation to reduce sample size (or in more general, computation
time) whenever such reduction is indeed possible. We believe that some of these
approaches can be formally discussed so that we can propose adaptive learning
algorithms with theoretically guaranteed performance.

This paper has some overlap with the author’s previous survey paper on
sequential sampling [22]. Due to the space limitation, we will omit some of the
technical discussions explained there.

2 Our Problem and Statistical Bounds

In this paper, we fix one simple estimation problem for our basic example, and
discuss sampling techniques on this problem or its variations. Let us specify our
problem. Let D be an input data set; here it is simply a set of instances. Let B
be a Boolean function defined on instances in D. That is, for any « € D, B(x)
takes either 0 or 1. Our problem is to estimate the probability pp that B(x) =1
when x is given at random from D; in other words, the ratio of instances = in D
such that B(xz) = 1 holds.

Clearly, the probability pp can be computed by counting the number of
instances « in D for which B(xz) = 1 holds. In fact, this is only the way if
we are asked to compute pp exactly. But we consider the situation where D is

Sequential Sampling Techniques for Algorithmic Learning Theory 29

Batch Sampling
begin
m «— 0;
for n times do
get x uniformly at random from D;
m «— m + B(z);
output m/n as an approximation of pg;
end.

Fig. 1. Batch Sampling

huge and it is impractical to go through all instances of D for computing pp.
A natural strategy that we can take in such a situation is random sampling.
That is, we pick up some instances of D randomly and estimate the probability
pp on these selected instances. Without seeing all instances, we cannot hope
for computing the exact value of pg. Also due to the “randomness nature”, we
cannot always obtain a desired answer. Therefore, we must be satisfied if our
sampling algorithm yields a good approzimation of pp with reasonable probability.
In this paper, we will discuss this type of approximate estimation problem.
Our estimation problem is completely specified by fixing an “approximation
goal” that defines the notion of “good approximation”. We consider the following
one for our first approximation goal. (In the following, we will use pg to denote
the output of a sampling algorithm (for estimating pp); thus, it is a random
variable and the probability below is taken w.r.t. his random variable.)

Approximation Goal 1 (Absolute Error Bound)
For given 6 > 0 and €, 0 < € < 1, the goal is to have

Pr[[pp —pp| <€] > 1-4. (1)

As mentioned above, the simplest sampling algorithm for estimating pp is
to pick up instances of D randomly and estimate the probability pg on these
selected instances. Figure 1 gives the precise description of this simplest sampling
algorithm, which we call Batch Sampling algorithm. Here only the assumption
we need (for using the statistical bounds explained below) is that we can easily
pick up instances from D uniformly at random and independently.

The description of Batch Sampling algorithm of Figure 1 is still incomplete
since we have not specified the way to determine n, the number of iterations or
sample size. Of course, to get an accurate estimation, the larger n is the better;
on the other hand, for the efficiency, the smaller n is the better. We would like
to achieve a given accuracy with as small sample size as possible.

To determine appropriate sample size, we can use several statistical bounds,
upper bounds of the probability that a random variable deviates far from its ex-
pectation. Here we explain the Hoeffding bound [13] and the Chernoff bound [2]
that have been used in computer science. (In practice, the bound derived from
the Central Limit Theorem gives a better (i.e., smaller) sample size. But the Cen-

30 Osamu Watanabe

tral Limit Theorem holds only asymptotically, and furthermore, the difference
is within a constant factor. Thus, it is omitted here (see, e.g., [9,22]).)

For explaining these bounds, let us prepare some notations. Let Xi,..., X,
be independent trials, which are called Bernoulli trials, such that, for 1 <i < n,
we have Pr[X; = 1] = p and Pr[X; = 0] =1 —p for some p, 0 < p < 1. Let X be
a random variable defined by X = Y | X;. Then its expectation E[X] = np;
hence, the expected value of X/n is p. The above three bounds respectively give
an upper bound of the probability that X /n differs from p, say, e. Below we use
exp(z) to denote e*, where e is the base of the natural logarithm.

Now these two bounds are stated as follows. (In order to distinguish absolute
and relative error bounds, we will use symbols € and ¢ for absolute and relative
error bounds respectively.)

Theorem 1. (The Hoeffding Bound)
For any €, 0 < € < 1, we have the following relations.

X X
Pr {— >p+ e} < exp(—2ne?), Pr {— <p-— e} < exp(—2ne?).
n n

Theorem 2. (The Chernoff Bound)
For any e, 0 < e < 1, we have the following relations.

X 2 X 2
Pr {— > (1 —&-E)p} < exp (_Pn&) , Pr {— <(1- E)p} < exp (—pm) :
n 3 n 2

By using these bounds, we calculate “safe” sample size, the number n of
examples, so that Batch Sampling satisfies our approximation goals. Here we
consider Goal 1, i.e., bounding the absolute estimation error. It is easy to prove
that the following bounds work. (The proof is easy and it is omitted here.)

Theorem 3. For any § > 0 and ¢, 0 < € < 1, if Batch Sampling uses sample
size n satisfying one of the following inequalities, then it satisfies (1).

1 2 3p . (2

This theorem shows that the simplest sampling algorithm, Batch Sampling,
can be used to achieve the Approximation Goal 1 with a reasonable sample size.
Let us see how the above (sufficient) sample size grows depending on given pa-
rameters. In both bounds (2) and (3), n grows proportional to 1/€2 and In(1/6).
Thus, it is costly to reduce the (absolute) approximation error. On the other
hand, we can reduce the error probability (i.e., improve the confidence) quite a
lot without increasing the sample size so much.

3 Absolute Error vs. elative Error

For another typical approximation goal, we consider the following one.

Sequential Sampling Techniques for Algorithmic Learning Theory 31

Approximation Goal 2 (Relative Error Bound)
For given 6 > 0 and ¢, 0 < € < 1, the goal is to have

Pr[|pp —pp| <epp] > 1-4. (4)

Here again we try our Batch Sampling algorithm to achieve this goal. Since
the Chernoff bound is stated in terms of relative error, it is immediate to obtain
the following sample size bound. (We can get a similar but less efficient sample
size bound by using the Hoeffding bound.)

Theorem 4. For any § > 0 and £, 0 < € < 1, if Batch Sampling uses sample
size n satisfying the following inequality, then it satisfies (/).

Epr In (%) . (5)

The above size bound is similar to (3). But it does not seem easy to use be-
cause pp, the probability what we want to estimate, is in the denominator of the
bound. (Cf. In the case of (3), we can safely assume that pp = 1.) Nevertheless,
there are some cases where a relative error bound is easier to use and the above
size bound (5) provides a better analysis to us. We show such examples below.

We consider some variations of our estimation problem. First one is the fol-
lowing problem.

Problem 1 Let 69 > 0 be any constant and fized. For a given pgy, determine
(with confidence > 1 — dy) whether pg > po or not. We may assume that either
pB > 3po/2 or pp < po/2 holds.

That is, we would like to “approximately” compare pgp with pg. Note that
we do not have to answer correctly when po/2 < pp < 3po/2 holds.

First we use our sample size bound (2) for Approximation Goal 1. It is easy
to see that the requirement of the problem is satisfied if we run Batch Sampling
algorithm with sample size n; computed by using € = pg/2 and § = dy, and
compare the obtained pg with py. That is, we can decide (with high confidence)
that pg > po if pg > po and pg < pg otherwise. Note that the sample size n; is
2¢/pg, where ¢ = In(2/6p).

On the other hand, by using the sample size bound (5), we can take the
following strategy. Let ny = 48¢/po, the sample size computed from (5) with
e =1/2, pp = po/2, and § = §p, where ¢ = In(2/dy) as above. Run Batch
Sampling with this ne and let pg be the obtained estimation. Then compare
pp with 3pg/4. We can prove that with probability 1 — d, we have pg > pg if
pB > 3po/4 and pp < 3pg otherwise.

Comparing two sample size n; and no, we note that n; = O(l/p%) and ng =
O(1/po); that is, ny is asymptotically better than n;. One reason for this differ-
ence is that we could use large € (i.e., e = 1/2) for computing ns.

Next consider the problem of estimating the product probability. Instead
of estimating one probability pp, we consider here a sequence of probabilities

32 Osamu Watanabe

P1, ..., pr, where each p; is defined as the probability that B:(x) holds for in-
stance x randomly chosen from its domain D;. Now our problem is to estimate
their product Pr = Hthl p; within a given absolute error bound. That is, the
following problem.

Problem 2 Let 9 > 0 be any constant and fized. For a given €g, obtain an
estimation Pr of Pp such that

Pr[|[Pr—Pr|<e] > 1—4d. (6)

This is a simplified version of the problem solved by Kearns and Singh in [14]
for approximating an underlying Markov decision process, and the following
improvement is due to Domingo [3].

We may assume that, for each ¢, 1 <t < T, it is easy to pick up instances
from D; uniformly at random and independently. Thus, by using Batch Sam-
pling, we can get an approximate estimation p; of each p;. Here again we use
sample size bounds for two approximation goals.

The strategy used by Kearns and Singh in [14] is essentially based on the
bound (2) for Approximation Goal 1. Their argument is outlined as follows.

1. Check whether there is some ¢, 1 < ¢ < T, such that p; < ey. (We can use the
condition discussed above.) If p; < €g, then we can simply estimate]3; =0,
which satisfies the requirement because Pr < €.

2. Otherwise, for some € specified later, compute the sample size n; for achiev-
ing Goal 1 with Batch Sampling. (We use 69/T for §.) Then for each ¢,
1 <t < T, run Batch Sampling algorithm with sample size n; to get esti-
mate p; of p;.

3. From our choice of ni, the following holds with probability 1 — dy. (We also
have a lower bound inequality, which can be treated symmetrically.)

T T
Pr = Hﬁt < H(thre).
t=1 t=1
But since p; > €g, we have
T T . N\T T AT
[[ei+e = J]w <1+_> = (1+—> [Ie: = (1+—> Pr.
=1 =1 €0 €0 =1 €0

Then by letting € = €3/(27"), we have the desired bound, i.e., 13; < Pr + €.
4. Finally, the total sample N; size is estimated as follows, where ¢ = In(T/dy).

Ny = T-ny = T(c(2T)?/268) = ¢(2T3/€p).

On the other hand, the argument becomes much simpler if we compute sam-
ple size no using the bound (5) for Approximation Goal 2. (Since the first two
steps are similar, we only state the last two steps.)

Sequential Sampling Techniques for Algorithmic Learning Theory 33

3. From our choice of ng, the following holds with probability 1 — dp.

T T T
Pr = Hﬁt < Hpt(l—i—g) = (1+5)THpt = (1+¢)TPr.
t=1 t=1

t=1

Then by letting € = €9/(2T'), we have the desired bound.
4. Recall that we are considering the situation such that p; > €y for every ¢,
1 <t <T. Hence, the total sample Ny size is estimated as follows.

Ny = T-ny = T(c-3(2T%)/eoed) = c(12T3/€3).

Note that Ny = O(T?/ef) and Ny = O(T3/€3). That is, Ny is asymptotically
better than Nj.

4 Adaptive Sampling for Bounding the Relative Error

In the previous section, we have seen some examples such that we can design an
asymptotically better algorithm by bounding the relative error (instead of the
absolute error) in the approximation problem. On the other hand, for computing
the size bound (5), we need to know pp or its appropriate lower bound, which
is not easy in some cases. Even if we can use a lower bound py for pp, the
actual pp may be usually much larger than py, and we almost always have to
use unnecessarily large sample sets. For example, for solving Problem 2 in the
previous section, we may assume that p; > € for all ¢, 1 < ¢ < T, and thus
we could determine the sample size bound Ny = O(T?/e}). But if every p;,
1 <t < T, is much larger than €y, then this sample size is unnecessarily big.

One way to avoid this problem is to perform presampling. By running our
sampling algorithm, e.g., Batch Sampling, with small sample size and obtain
some “rough” estimate of pg. Although it may not be a good approximation
of pp, we can use it to determine appropriate sample size for main sampling.
This is the strategy often suggested in statistics texts, and in fact, this idea
leads to our “adaptive sampling” techniques. Note further that we do not have
to separate presampling and main sampling. On the course of sampling, we can
improve our knowledge on pp; hence, we can simply use it. More specifically,
what we need is a stopping condition that determines whether it has already
seen enough number of examples by using the current estimation of pg.

Lipton etal [15,16] realized this intuitive idea and proposed adaptive sam-
pling algorithms for query size estimation and related problems for relational
database. Our approximate estimation of pp is a special case of estimating query
sizes. Thus, their algorithm is immediately applicable to our problem. (On the
other hand, the proof presented here is for the special case, and it may not
be used to justify the original adaptive sampling algorithm proposed by Lipton
etal [17].)

Figure 2 is the outline of the adaptive sampling algorithm of [15]. Though it
is simplified, the adaptive sampling part is essentially the same as the original

34 Osamu Watanabe

Adaptive Sampling
begin
m «— 0; n« 0;
while m < A do
get x uniformly at random from D;
m—m+B(z); n—n+1;
output m/n as an approximation of pg;
end.

Fig. 2. Adaptive Sampling

one. As we can see, the structure of the algorithm is simple. It runs until it sees
more than A examples x with B(z) = 1.

To complete the description of the algorithm, we have to specify the way to
determine A. Here we use the Chernoff bound and derive the following formula
for computing A.

Theorem 5. For any 6 > 0 and €, 0 < € < 1, if Adaptive Sampling uses the
following A, then it satisfies (/) with probability > 1 — 6.

L ESNG)

g2)

Furthermore, with probability > 1 — §/2, we have

. 3(1+¢) 2
. . < i
sample size < T In (5) (7)

Compare the sample size given by (5) and (7). Since € is usually small, the
difference is within some constant factor. That is, the sample size of this Adaptive
Sampling algorithm is almost optimal; it is almost the same as the best case
where the precise pp is given. Therefore, if our target algorithm is designed with
the bound (5) for Goal 2, then we can add “adaptivity” to the algorithm without
(drastically) changing the worst-case performance of the algorithm. For example,
consider the previous Problem 2 of estimating the product probability Pr. We
can modify the second strategy by replacing Batch Sampling with Adaptive
Sampling. Then new sample size N3 becomes (with some small constant ¢’ > 0)

N3 = ¢ -¢c(12T73/(poed)),

where pg > ¢ is a lower bound for p1, ..., pr. In the worst-case (i.e., po = €g), N3
= O(T3/€3), which is the same order as No. On the other hand, if the situation is
favorable and pyg is large, say, po > 1/2, then N3 gets decreased and we have Nj
= O(T3/et). That is, we could add “adaptivity” to our new strategy without
changing the worst-case performance.

Now we explain the outline of the proof of Theorem 5. In the following
discussion, let ¢ denote the number of execution of the while-iterations until

Sequential Sampling Techniques for Algorithmic Learning Theory 35

Adaptive Sampling halts. In other words, the algorithm has seen t examples and
then the while-condition breaks. (In the following, we simply call this situation
“the algorithm halts at the tth step”.) Note that ¢ is a random variable that
varies depending on the examples drawn from D. Let m; and p; denote the
value m and m/n when the algorithm halts at the tth step.

Since the while-condition breaks at the tth step, it holds that A < m;. On
the other hand, m; < A + 1 holds because the while-condition holds before
the tth step. Hence we have A/t < p; < (A+1)/t. Here in order to simplify our
discussion, we assume that p; = A/t. In fact, we will see below that ¢ is larger
than 1/(e%pp) with high probability; thus, the difference (A+1)/t— A/t (= 1/t)
is negligible compared with the error bound epp. Now assuming p; ~ A/t, it is
easy to see that p; is within the desired range [(1—¢)pp, (1+¢)pg] (i-e., |p: —p5|
< epp) if and only if

A, A
(I+eps =~ (L—¢)ps

holds for ¢. Therefore, the theorem follows from the following two lemmas. (Recall
that ¢ is a random variable, and the probabilities below are taken w.r.t. his
random variable. The proof outlines are given in Appendix.)

Lemma 1. Pr[¢t < A/((1+¢)pp) | < §/2.
Lemma 2. Pr[t > A/((1 —¢)pp) | < 6/2.

Notice that the sample size bound (7) is immediate from Lemma 2.

5 Adaptive Sampling for General Utility Functions

We have seen two ways for estimating pp within either an absolute or a relative
error bound. But in some applications, we may need the other closeness con-
ditions, or in more general, we might want to estimate not pp but some other
“utility function” computed from pp. Recall the difference between the sample
size n1 and ny we have seen at Problem 1. One reason that ng is asymptotically
smaller than n; is that we could use a relatively large ¢ for computing ns, and we
could use a large £ because Approximation Goal 2 was suitable for Problem 1.
Thus, the choice of an appropriate approximation goal is important.
To see this point more clearly, let us consider the following problem.

Problem 3 Let 6o > 0 be any constant and fized. Determine (with confidence
> 1—dp) whether pg > 1/2 or not. Here we may assume that either pg > 1/2+0¢
or pp < 1/2 — og holds for some oy.

This problem is similar to Problem 1, but these two problems have different
critical points. That is, Problem 1 gets harder when py gets smaller, whereas
Problem 3 gets harder when o gets smaller. In other words, the closer pp is to
1/2, the more accurate estimation is necessary, and hence the more sample is

36 Osamu Watanabe

needed. Thus, for solving Problem 3, what we want to estimate is not pp itself
but the following value:

1
up = - —.
B bB)
More specifically, the above problem is easily solved if the following approx-
imation goal is achieved. (In the following, we use up to denote the output of a
sampling algorithm for estimating up. Note that up is not always positive.)

Approximation Goal 3 For given 6 > 0 and g, 0 < € < 1, the goal is to have
Pr lup —up| <elug|] > 1—0. (8)

Suppose that some sampling algorithm satisfies this goal. Then for solving
the above problem, we run this algorithm to estimate up with relative error
bound ¢ = 1/2 and § = §p. (We are also given oy.) Then decide pp > 1/2 if
up > 00/2 and pp < 1/2 if up < —0¢/2. It is easy to check that this method
correctly determines whether pg > 1/2 or pp < 1/2 with probability > 1 — d
(when either pp > 1/2+ 0g or pg < 1/2 — 0¢ holds).

Now we would face the same problem. There may exist no appropriate lower
bound of upg, like gg. Again sequential sampling algorithm is helpful for solving
this problem. One might want to modify our previous Adaptive Sampling algo-
rithm for achieving this new approximation goal. For example, by replacing its
while-condition “m < A” with “m —n/2 < B” and by choosing B appropriately,
we may be able to satisfy the new approximation goal. Unfortunately, though,
this naive approach does not seem to work. In the previous case, the stopping
condition (i.e., the negation of the while-condition “m < A”) was monotonic;
that is, once m > A holds at some point, this condition is unchanged even if we
keep sampling. On the other hand, even if m —n/2 > B holds at some point, the
condition may be falsified later if we keep sampling. Due to this nonmonotonicity,
the previous proof (i.e., the proof of Lemma 1) does not work.

Fortunately, we can deal with this nonmonotonicity by using a slightly more
complicated stopping condition. In Figure 3, we state an adaptive sampling
algorithm that estimates up and satisfies Approximation Goal 3. Note that the
algorithm does not use any information on up; hence, we can use it without
knowing up at all.

Theorem 6. Foranyd >0 ande, 0 < e < 1, Nonmonotinic Adaptive Sampling
satisfies (8). Furthermore, with probability more than 1 — 8, we have

2(1 + 2¢)? 1
sample size < (1+ 2) In .
~ (eup)? cugd

We give a proof sketch. The proof outline is basically the same as the one
used in the previous section. Again let ¢t be a random variable whose value is the
step when the algorithm terminates. For any k > 1, we use uy and «; to denote
respectively the value of u and « at the kth step. Define ¢y and ¢; by

Sequential Sampling Techniques for Algorithmic Learning Theory 37

Nonmonotonic Adaptive Sampling
begin
m «— 0; n« 0;
u — 0; a «— oo
while |u| < a(1+ 1/¢) do
get x uniformly at random from D;
m—m+ B(z); n<—n+1;
u— m/n—1/2;
o — \/(1/2n) In(n(n+1)/6);
output u as an approximation of up;
end.

Fig. 3. Nonmontonic Adaptive Sampling

to = mk'}n{ ar <celugl }, and t; = mkin{ ar < elug|/(1+ 2¢) }.

Since aj, decreases monotonously in k, both ¢y and ¢; are uniquely determined,
and t() S tl.

We first show that if tg < t < t1, that is, if the algorithm stops no earlier than
the toth step nor later than the ¢1th step, then its output u; is in the desired
range. (The proof is omitted; see [22].)

Lemma 3. Iftg < t < 1, then we have |u; — up| < elug| with probability >
1—4/(2tp)-

Next we show that with reasonable probability the algorithm halts between
the toth and t1th step. It is easy to see that Theorem 6 follows from these
lemmas. (The proof of Lemma 4 is given in Appendix. On the other hand, we
omit the proof of Lemma 5 because it is similar to Lemma 2.)

Lemma 4. Pr[t <ty] < §(1 —1/tp).

Lemma 5. Pr[t >t | < §/(2tp).

6 Concluding Remarks

We have seen some examples of sequential sampling algorithms and the way they
are used for designing adaptive algorithms. For our explanation, we have used a
very simple probability estimation problem and its variations, but there are many
other interesting problems we can solve by using sequential sampling algorithms.
For example, we have originally developed sequential sampling algorithms for
selecting nearly optimal hypothesis [8], and some extension of our hypothesis
selection technique has been also reported in [19].

Although only a simple utility function is considered, we may be able to use
various functions defined on one or more estimated probabilities. For example,

38 Osamu Watanabe

estimating the entropy or some pseudo entropy function by some sequential
sampling technique is an interesting and practically important problem. In our
general sampling algorithm [3], we have only considered utility functions that
can be approximated by some linear function, because otherwise sample size may
become very large. Since the entropy function does not belong to this function
family, we need to find some way to bound sample size to a reasonable level.

Acknowledgments

This paper is based on a series of joint works [0,7,3] with Carlos Domingo and Ri-
card Gavalda. I have learned a lot from these talented researchers. In particular,
I thank Carlos for supplying me with information on related works for preparing
this manuscript. I would like to thank Professor Akahira and Professor Lynch
for discussion and giving me pointers to related works. This work is supported
in part by Grant-in-Aid for Scientific Research on Priority Areas (Discovery
Science), 1999, the Ministry of Education, Science, Sports and Culture.

References

1. J. Balcazar, a personal communication. 28

2. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations, Annals of Mathematical Statistics 23, pp.493-509, 1952.
29

3. C. Dominogo, Faster near-optimal reinforcement learning: adding adaptiveness
to the E3 algorithm, in Proc. f 10th Algorithmic Learning Theory Conference
(ALT99), Lecture Notes in Artificial Intelligence 1720, Springer-Verlag, pp.241—
251, 1999. 28, 32

4. C. Domingo and O. Watanabe, Scaling up a boosting-based learner via adaptive
sampling, in Proc. f Knowledge Discovery and Data Mining (PAKDD’00), Lecture
Notes in Artificial Intelligence 1805, Springer-Verlag, pp.317-328, 2000. 28

5. C. Domingo and O. Watanabe, MadaBoost: a modification of AdaBoost, in Proc. f
13th Annual Conference on Computational Learning Theory (COLT’00), Morgan
Kaufmann, pp.180-189, 2000. 28

6. C. Domingo, R. Gavalda, and O. Watanabe, Practical algorithms for on-line se-
lection, in Proc. f the First Intl. onference on Discovery Science, Lecture Notes in
Artificial Intelligence 1532, Springer-Verlag, pp.150-161, 1998. 27, 38

7. C. Domingo, R. Gavalda, and O. Watanabe, Adaptive sampling methods for scal-
ing up knowledge discovery algorithms, in Proc. f the Second Intl. onference on
Discovery Science, Lecture Notes in Artificial Intelligence , Springer-Verlag, pp.—,
1999. 27, 38

8. C. Domingo, R. Gavalda, and O. Watanabe, Adaptive sampling meth-
ods for scaling up knowledge discovery algorithms, J. mowledge Discovery
and Data Mining, to appear. (Also available as a research report C-136,
Dept. f Math. and Computing Sciences, Tokyo Institute of Technology, from
www.is.titech.ac.jp/research/research-report/C/) 27, 37, 38

9. W. Feller, An Introduction to Probability Theory and its Applications (Third Edi-
tion), John Wiley & Sons, 1968. 27, 30

Sequential Sampling Techniques for Algorithmic Learning Theory 39

10. B. K. Ghosh and P. K. Sen eds., Handbook of Sequential Analysis, Marcel Dekker,
1991. 28

11. B. K. Ghosh, M. Mukhopadhyay, P. K. Sen, Sequential Estimation, Wiley, 1997.
28

12. R. Greiner, PALO: a probabilistic hill-climbing algorithm, Artificial Intelligence,
84, pp.177-204, 1996. 28

13. 'W. Hoeffding, Probability inequalities for sums of bounded random variables, Jour-
nal of the American Statistical Association 58, pp.13-30, 1963. 29

14. M. Kearns and S. Singh, Near-optimal reinforcement learning in polynomial time,
in Proc. f the 16th Intl. onference on Machine Learning (ICML’98), Morgan Kauf-
mann, 260-268, 1998. 32

15. R. J. Lipton, J. F. Naughton, D. A. Schneider, and S. Seshadri, Efficient sampling
strategies for relational database operations, Theoretical Computer Science 116,
pp.195-226, 1993. 28, 33

16. R. J. Lipton and J. F. Naughton, Query size estimation by adaptive sampling,
Journal of Computer and System Science 51, pp.18-25, 1995. 28, 33

17. J. F. Lynch, Analysis and application of adaptive sampling, in Proc. f the 19th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS99), ACM Press, pp.260-267, 1999. 28, 33

18. O. Maron and A. Moore, Hoeffding races: accelerating model selection search for
classification and function approximation, in Advances in Neural Information Pro-
cessing Systems, Morgan Kaufmann, 59-66, 1994. 28

19. T. Scheffer and S. Wrobel, A sequential sampling algorithm for a general class of
utility criteria, in Proc. f the 6th ACM SIGKDD Intl. Conference on Knowledge
Discovery and Data Mining, ACM Press, 2000, to appear. 28, 37

20. P. Haas and A. Swami, Sequential sampling, procedures for query size estimation,
IBM Research Report, RJ 9101 (80915), 1992. 28

21. A. Wald, Sequential Analysis, John Wiley & Sons, 1947. 28

22. O. Watanabe, Simple sampling techniques for discovery science, IEICE
Trans. Info. & Systems, E83-D (1), 19-26, 2000. (A preliminary version is available
as a research report C-137, Dept. f Math. and Computing Sciences, Tokyo Institute
of Technology, from www.is.titech.ac.jp/research/research-report/C/) 28,
30, 37

Appendix
Here we give proof outlines for Lemma 1 and Lemma 2.

Proof of Lemma 1. We would like to estimate the above probability, and for this
purpose, we want to regard the B value of chosen examples as the Bernoulli trials
and to use the statistical bounds of the previous section. There is, however, one
technical problem. These statistical bounds are valid for fixed number of trials,
i.e., examples in this case. On the other hand, the number of examples ¢ itself
is a random variable. Here we can get around this problem by arguing in the
following way.

Let to = A/((1 + ¢)pp). Then our goal is to show that the algorithm halts
within ¢y steps with high probability. Now we modify our algorithm so that it
always sees exactly tyo examples. That is, this new algorithm just ignores the
while-condition and repeats the while-iteration exactly ty times. Consider the
situation that the original algorithm does halt at the tth step for some t < tg.

40 Osamu Watanabe

Then we have m; > A at the tth step, where m; denotes the value of m at
the tth step. Though the algorithm stops here, if we continued the while-iteration
after the ¢th step, we would clearly have my, > A at the toth step. From this
observation, we have

Pr[my; > A for some t < tg |
< Pr[my, > A in the modified algorithm .

On the other hand, the modified algorithm always sees ty examples; that
is, it is Batch Sampling. Thus, we can use the Chernoff bound to analyze the
righthand side probability. By our choice of mhtz and A, it is easy to prove that
the righthand side probability is at most §/2. Thus, the desired bound is proved.
The reason that we could argue by considering only the tgth step is because the
stopping condition “m > A” is monotonic.

Proof of Lemma 2. Let t; = A/((1 — €)pp). We want to bound the probability
that the algorithm does not halt after the £;th step. Note that this event im-
plies that my, < A. Thus, it suffices to bound Pr[my, < A] by §/2, which is
not difficult by using the Chernoff bound. Here again we consider the modified
algorithm that sees exactly ¢; examples.

Proof of Lemma /. In order to bound Pr[t < ty], we first consider, for any k,
1 < k < tg, the probability Py that the algorithm halts at the kth step.

Note that the algorithm halts at the kth step if and only if |ug| > ax(14+1/¢).
Thus, we have

— 1 —
P, = Pr[|uk|2ak (1+g>} < Prf|ug| > lup|l+ ax],

because ay > e|up| since k < to.

This means that P, < Prluy > up+ay] if ux > 0, and Py < Prluy < up—ayg]
otherwise. Both probabilities are bounded by using the Hoeffding bound in the
following way. (Here we only state the bound for the former case. Also although
we simply uses the Hoeffding bound below, precisely speaking, the argument as
in the proof of Theorem 1 is necessary to fix the number of examples. That is,
we first modify the algorithm so that it always sees k examples.)

Py < Pr[ug > up + oy |

k
1 1
:Pr[;Xi/n—§>pB—§+ak]
)
< —2a2 = —.
< ep(=204k) = T

Now summing up these bounds, we have

to—1
1
Prit<ty] < > P < 5(1——).

k=1

Towards an Algorithmic Statistics
(Extended Abstract)

Peter Géacs*, John Tromp, and Paul Vitadnyi**

Abstract. While Kolmogorov complexity is the accepted absolute mea-
sure of information content of an individual finite object, a similarly ab-
solute notion is needed for the relation between an individual data sample
and an individual model summarizing the information in the data, for
example, a finite set where the data sample typically came from. The
statistical theory based on such relations between individual objects can
be called algorithmic statistics, in contrast to ordinary statistical theory
that deals with relations between probabilistic ensembles. We develop a
new algorithmic theory of typical statistic, sufficient statistic, and mini-
mal sufficient statistic.

1 Introduction

We take statistical theory to ideally consider the following problem: Given a
data sample and a family of models (hypotheses) one wants to select the model
that produced the data. But a priori it is possible that the data is atypical for
the model that actually produced it, or that the true model is not present in the
considered model class. Therefore we have to relax our requirements. If selection
of a “true” model cannot be guarantied by any method, then as next best choice
“modeling the data” as well as possible, irrespective of truth and falsehood of the
resulting model, may be more appropriate. Thus, we change ‘true” to “as well
as possible.” The latter we take to mean that the model expresses all significant
regularities present in the data.

Probabilistic Statistics: In ordinary statistical theory one proceeds as fol-
lows, see for example [3]: Suppose two random variables X, Y have a joint prob-
ability mass function p(z,y) and marginal probability mass functions p(x) and
p(y). Then the (probabilistic) mutual information I(X;Y) is the relative entropy
between the joint distribution and the product distribution p(z)p(y):

I(X;Y)ZEZp(w,y)log]%- (1)

Every function T'(D) of a data sample D—Ilike the sample mean or the sample
variance—is called a statistic of D. Assume we have a probabilistic ensemble of

* Address: Computer Science Department, Boston University, Boston MA 02215,
U.S.A. Email: gacs@bu.edu. The paper was partly written during this author’s visit
at CWL

** Address: CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. Email: {tromp,
paulv}@cwi.nl

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 41-55, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

42 Peter Gacs et al.

models, say a family of probability mass functions {fs} indexed by 6, together
with a distribution over 6. A statistic T'(D) is called sufficient if the probabilistic
mutual information

1(6; D) = 1(6;T(D)) (2)

for all distributions of . Hence, the mutual information between parameter and
data sample is invariant under taking sufficient statistics and vice versa. That is
to say, a statistic T'(D) is called sufficient for 8 if it contains all the information
in D about . For example, consider n tosses of a coin with unknown bias § with
outcome D = dydy . ..d, where d; € {0,1} (1 <i < n). Given n, the number of
outcomes “1” is a sufficient statistic for : the statistic (D) = Y"1, d;. Given
T, every sequence with T'(D) “17s are equally likely independent of parameter 6:
Given k, if D is an outcome of n coin tosses and T'(D) = k then Pr(D | T(D) =
k) = (Z)_1 and Pr(D | T(D) # k) = 0. This can be shown to imply (2) and
therefore T is a sufficient statistic for . According to Fisher [4]: “The statistic
chosen should summarise the whole of the relevant information supplied by the
sample. This may be called the Criterion of Sufficiency ... In the case of the
normal curve of distribution it is evident that the second moment is a sufficient
statistic for estimating the standard deviation.” Note that one cannot improve
on sufficiency: for every (possibly randomized) function 7" we have

1(6; D) > 1(6; T(D)), (3)

that is, mutual information cannot be increased by processing the data sample
in any way. All these notions and laws are probabilistic: they hold in an average
sense. Our program is to develop a sharper theory, which we call algorithmic
statistics to distinguish it from the standard probabilistic statistics, where the
notions and laws hold in the individual sense.

Algorithmic Statistics: In algorithmic statistics, one wants to select an in-
dividual model (described by, say, a finite set) for which the data is individually
typical. To express the notion “individually typical” one requires Kolmogorov
complexity—standard probability theory cannot express this. The basic idea is
as follows: In a two-part description, we first describe such a model, a finite set,
and then indicate the data within the finite set by its index in a natural ordering
of the set. The optimal models make the two-part description as concise as the
shortest one-part description of the data. Moreover, for such optimal two-part
descriptions it can be shown that the data will be “individually typical” for
the model concerned. A description of such a model is an algorithmic sufficient
statistic since it summarizes all relevant properties of the data. Among the al-
gorithmic sufficient statistics a simplest one (the algorithmic minimal sufficient
statistic) is best in accordance with Ockham’s razor principle since it summa-
rizes the relevant properties of the data as concisely as possible. In probabilistic
data or data subject to noise this involves separating regularities (structure) in
the data from random effects.

Background and Related Work: At a Tallinn conference in 1973, A.N.
Kolmogorov formulated this task rigorously in terms of Kolmogorov complexity

Towards an Algorithmic Statistics (Extended Abstract) 43

(according to [14,2]). This approach can also be viewed as a two-part code sep-
arating the structure of a string from meaningless random features. Cover [2, 3]
interpreted this approach as (sufficient) statistic. Related aspects of “randomness
deficiency” (formally defined later in (11)) were formulated in [9,10] and stud-
ied in [14,17]. Algorithmic mutual information, and the associated non-increase
law, were studied in [11,12]. Despite its evident epistimological prominence in
the theory of hypothesis selection and prediction, only some scattered aspects
of the subject have been studied before, for example as related to the “Kol-
mogorov structure function” [14, 2], and “absolutely non-stochastic objects” [14,
17,15,18], notions also defined or suggested by Kolmogorov at the mentioned
meeting. For the relation with inductive reasoning according to minimum de-
scription length principle see [16]. The entire approach is based on Kolmogorov
complexity [8] (also known as algorithmic information theory). For a general in-
troduction to Kolmogorov complexity, its mathematical theory, and application
to induction see [7].

Results: We develop the outlines of a new general mathematical theory of
algorithmic statistics, in this initial approach restricted to models that are finite
sets. A set S is “optimal” if the best two-part description consisting of a descrip-
tion of S and a straightforward description of = as an element of S by an index of
size log|S|, is as concise as the shortest one-part description of x. Descriptions
of such optimal sets are algorithmic sufficient statistics, and the shortest de-
scription among them is an algorithmic minimal sufficient statistic. The mode of
description plays a major role in this. We distinguish between “explicit” descrip-
tions and “implicit” descriptions—that are introduced in this paper as a proper
restriction on recursive enumeration based description mode. We establish new
precise range constraints of cardinality and complexity imposed by implicit (and
hence explicit) descriptions for typical and optimal sets, and exhibit for the first
time concrete algorithmic minimal (or near-minimal) sufficient statistics for both
description modes. There exist maximally complex objects for which no finite set
of less complexity is an explicit sufficient statistic—such objects are absolutely
non-stochastic. This improves a result of Shen [14] to the best possible.

Application: In all practicable inference methods, one must use background
information to determine the appropriate model class first—establishing what
meaning the data can have—and only then obtain the best model in that class by
optimizing its parameters. For example in the “probably approximately correct
(PAC)” learning criterion one learns a concept in a given concept class (like a
class of Boolean formulas over n variables); in the “minimum description length
(MDL)” induction, [1], one first determines the model class (like Bernoulli pro-
cesses). Note that MDL has been shown to be a certain generalization of the
(Kolmogorov) minimum sufficient statistic in [16].

To develop the onset of a theory of algorithmic statistics we have used the
mathematically convenient model class consisting of the finite sets. An illustra-
tion of background information is Example 3. An example of selecting a model
parameter on the basis of compression properties is the precision at which we
represent the other parameters: too high precision causes accidental noise to be

44 Peter Gacs et al.

modeled as well, too low precision may cause models that should be distinct
to be confused. In general, the performance of a model for a given data sam-
ple depends critically on what we may call the “degree of discretization” or the
“granularity” of the model: the choice of precision of the parameters, the number
of nodes in the hidden layer of a neural network, and so on. The granularity is
often determined ad hoc. In [5], in two quite different experimental settings the
MDL predicted best model granularity values are shown to coincide with the
best values found experimentally.

2 Kolmogorov Complexity

We assume familiarity with the elementary theory of Kolmogorov complexity.
For introduction, details, and proofs, see [7]. We write string to mean a finite
binary string. Other finite objects can be encoded into strings in natural ways.
The set of strings is denoted by {0,1}*. The length of a string z is denoted
by I(z), distinguishing it from the cardinality |S| of a finite set S. The (prefix)
Kolmogorov complexity, or algorithmic entropy, K (x) of a string z is the length
of a shortest binary program to compute x on a universal computer (such as a
universal Turing machine). Intuitively, K (z) represents the minimal amount of
information required to generate z by any effective process, [8]. We denote the
shortest program for z by x*; then K (z) = I(z*). (Actually, z* is the first shortest
program for z in an appropriate standard enumeration of all programs for = such
as the halting order.) The conditional Kolmogorov complexity K(z | y) of =
relative to y is defined similarly as the length of a shortest program to compute
z if y is furnished as an auxiliary input to the computation.

From now on, we will denote by < an inequality to within an additive con-

stant, and by = the situation when both < and > hold. We will also use < to
denote an inequality to within an multiplicative constant factor, and = to denote
the situation when both < and > hold.

We will use the “Additivity of Complexity” (Theorem 3.9.1 of [7]) property
(by definition K(z,y) = K ({z,y))):

K(z,y) £ K(2) + K(y | 2*) = K(y) + K(z | y"). (4)
The conditional version needs to be treated carefully. It is
K(z,y|2) =K@ |2)+ Ky |z, K(z]2),2). (5)
Note that a naive version
K(z,y|2) = K(z|2)+K(y|z",2)

is incorrect: taking z = z, y = K(z), the left-hand side equals K (z* | z), and
the right-hand side equals K (z | z) + K(K(z) | *,2) = 0.

We derive a (to our knowledge) new “directed triangle inequality” that is
needed below.

Towards an Algorithmic Statistics (Extended Abstract) 45

Theorem 1. For all x,y, z,
* + * + * *
K(z|y") < K(z,z|y") <K(z|y") + K(z | 27).

Proof. Using (4), an evident inequality introducing an auxiliary object z, and
twice (4) again:

K(z,y.2) —K(y) < K(2) + K(z | 2*) + K(y | 2*) — K(y)
K(y,2) - K@)+ K(x|2") Kz | =) + K(z | y").

K(z,z | y")

[+

O

This theorem has bizarre consequences. Denote k¥ = K (y) and substitute
k =z and K (k) = z to find the following counterintuitive corollary:

Corollary 1. K(K(k) |y, k) £ K(K(k) | y*) < K(K(k) | k*)+ K (k| y, k) = 0.
We can iterate this: given y and K(y) we can determine K(K(K(y))) in O(1)
bits. So K(K(K(k))) | y,k) =0 and so on.

If we want to find an appropriate model fitting the data, then we are con-
cerned with the information in the data about such models. To define the al-
gorithmic mutual information between two individual objects x and y with no
probabilities involved, rewrite (1) as

> (@, y)[~logp(x) —logp(y) +log p(x, y)],

and note that —logp(s) is the length of the prefix-free Shannon-Fano code for
s. Consider —logp(z) — logp(y) + log p(z,y) over the individual z,y, and re-
place the Shannon-Fano code by the “shortest effective description” code. ' The
information in y about x is defined as

I(y:2) = K(2) — K(z | y") = K(2) + K(y) - K(,y), (6)

where the second equality is a consequence of (4) and states the celebrated result
that the information between two individual objects is symmetrical, I(z : y) =
I(y : z), and therefore we talk about mutual information.? In the full paper [6]
we show that the expectation of the algorithmic mutual information I(z : y) is
close the the probabilistic mutual information I(z;y)—which corroborates that

! The Shannon-Fano code has optimal expected code length equal to the entropy with
respect to the distribution of the source [3]. However, the prefix-free code of shortest
effective description, that achieves code word length K(s) for source word s, has
both about expected optimal code word length and individual optimal effective code
word length, [7].

2 The notation of the algorithmic (individual) notion I(z : y) distinguishes it from the
probabilistic (average) notion I(z;y). We deviate slightly from [7] where I(y : z) is
defined as K(z) — K(z | y).

46 Peter Gacs et al.

the algorithmic notion is a sharpening of the probabilistic notion to individual
objects.

The mutual information between a pair of strings z and y cannot be in-
creased by processing x and y separately by some deterministic computations,
and furthermore, randomized computation can increase the mutual information
only with negligible probability, [11,12]. Since the first reference gives no proofs
and the second reference is not easily accessible, in the full version of this paper
[6] we use the triangle inequality of Theorem 1 to give new simple proofs of this
information non-increase.

3 Algorithmic Model Development

In this initial investigation, we use for mathematical convenience the model class
consisting of the family of finite sets of finite binary strings, that is, the set of
subsets of {0, 1}*.

3.1 Finite Set Representations

Although all finite sets are recursive there are different ways to represent or
specify the set. We only consider ways that have in common a method of recur-
sively enumerating the elements of the finite set one by one, and which differ
in knowledge of its size. For example, we can specify a set of natural numbers
by giving an explicit table or a decision procedure for membership and a bound
on the largest element, or by giving a recursive enumeration of the elements to-
gether with the number of elements, or by giving a recursive enumeration of the
elements together with a bound on the running time. We call a representation
of a finite set S ezplicit if the size |S| of the finite set can be computed from it.
A representation of S is implicit if the size |\S| can be computed from it only up
to a factor of 2.

Example 1. In Section 3.4, we will introduce the set S* of strings whose elements
have complexity < k. It will be shown that this set can be represented implicitly
by a program of size K (k), but can be represented explicitly only by a program
of size k.

Such representations are useful in two-stage encodings where one stage of the
code consists of an index in S of length £ log|S|. In the implicit case we know,
within an additive constant, how long an index of an element in the set is. In
general S* denotes the shortest binary program from which S can be computed
and whether this is an implicit or explicit description will be clear from the
context.

The worst case, a recursively enumerable representation where nothing is
known about the size of the finite set, would lead to indices of unknown length.
We do not consider this case. We may use the notation

Simpla Sexpl

Towards an Algorithmic Statistics (Extended Abstract) 47

for some implicit and some explicit representation of S. When a result applies to
both implicit and explicit representations, or when it is clear from the context
which representation is meant, we will omit the subscript.

3.2 Optimal Models and Sufficient Statistics

In the following we will distinguish between “models” that are finite sets, and
the “shortest programs” to compute those models that are finite strings. Such a
shortest program is in the proper sense a statistics of the data sample as defined
before. In a way this distinction between “model” and “statistics” is artificial,
but for now we prefer clarity and unambiguousness in the discussion.

Consider a string = of length n and prefix complexity K (z) = k. We identify
the structure or regularities in x that are to be summarized with a set S of which
x is a random or typical member: given S (or rather, an (implicit or explicit)
shortest program S* for S), z cannot be described much shorter than by its

maximal length index in S. Formally this is expressed by K (z | S*) g log|S|.
More formally, we fix some constant

B >0,

and require K (z | S*) > log|S| — 8. We will not indicate the dependence on
B explicitly, but the constants in all our inequalities (2) will be allowed to be

functions of this 3. This definition requires a finite S. In fact, since K(z | S*) <
K (z), it limits the size of S to O(2*) and a set S (rather, the shortest program
S* from which it can be computed) is a typical statistic for z iff

K(x|S*) £ log|S]. (@)

Depending on whether S* is an implicit or explicit program, our definition splits
into implicit and explicit typicality.

Ezample 2. Consider the set S of binary strings of length n whose every odd
position is 0. Let x be element of this set in which the subsequence of bits in even
positions is an incompressible string. Then S is explicitly as well as implicitly
typical for z. The set {z} also has both these properties.

Remark 1. Tt is not clear whether explicit typicality implies implicit typicality.
Section 4 will show some examples which are implicitly very non-typical but
explicitly at least nearly typical.

There are two natural measures of suitability of such a statistic. We might
prefer either the simplest set, or the largest set, as corresponding to the most
likely structure ‘explaining’ z. The singleton set {z}, while certainly a typical
statistic for z, would indeed be considered a poor explanation. Both measures
relate to the optimality of a two-stage description of = using S:

K(z) < K(z,8) £ K(S) + K(z | S*) < K(S) +log|S|, (8)

48 Peter Gacs et al.

where we rewrite K(z,S) by (4). Here, S can be understood as either Simpi or
Sexpt- Call a set S (containing x) for which

K(z) = K(S) +log]S], (9)

optimal. (More precisely, we should require K (z) > K(S)+log|S|—.) Depend-
ing on whether K (S) is understood as K (Simp1) or K (Sexpl), our definition splits
into implicit and explicit optimality. The shortest program for an optimal set
is a algorithmic sufficient statistic for z [3]. Furthermore, among optimal sets,
there is a direct trade-off between complexity and logsize, which together sum to
£ . Equality (9) is the algorithmic equivalent dealing with the relation between
the individual sufficient statistic and the individual data sample, in contrast to
the probabilistic notion (2).

Ezample 3. The following restricted model family illustrates the difference be-
tween the algorithmic individual notion of sufficient statistics and the proba-
bilistic averaging one. Following the discussion in section 1, this example also
illustrates the idea that the semantics of the model class should be obtained
by a restriction on the family of allowable models, after which the (minimal)
sufficient statistics identifies the most appropriate model in the allowable family
and thus optimizes the parameters in the selected model class. In the algorith-
mic setting we use all subsets of {0,1}" as models and the shortest programs
computing them from a given data sample as the statistics. Suppose we have
background information constraining the family of models to the n+1 finite sets
Sk ={z € {0,1}": 2 =2y...2,& Y z; = k} (0 < k < n). Then, in the
probabilistic sense for every data sample x = x; ...z, there is only one single
sufficient statistics: for), #; = k this is T'(z) = k with the corresponding model
Sk- In the algorithmic setting the situation is more subtle. (In the following ex-

ample we use the complexities conditional n.) For x = xy ...z, with). x; = §
n

taking Sa as model yields [Sxz| = (1), and therefore log|Sx | - 1logn.
2
The sum of K(Sz|n) £ 0 and the logarithmic term gives = n — 1 logn for the

right-hand side of (9). But taking z = 1010...10 yields K (z|n) = 0 for the left-
hand side. Thus, there is no algorithmic sufficient statistics for the latter x in
this model class, while every x of length n has a probabilistic sufficient statistics
in the model class. In fact, the restricted model class has algorithmic sufficient
statistics for data samples z of length n that have maximal complexity with
respect to the frequency of “1”s, the other data samples have no algorithmic
sufficient statistics in this model class.

Ezample 4. Tt can be shown that the set S of Example 2 is also optimal, and
so is {x}. Typical sets form a much wider class than optimal ones: {z,y} is still
typical for z but with most y, it will be too complex to be optimal for z.

For a perhaps less artificial example, consider complexities conditional to the
length n of strings. Let y be a random string of length n, let S, be the set of
strings of length n which have 0’s exactly where y has, and let z be a random
element of S,. Then z is a string random with respect to the distribution in

Towards an Algorithmic Statistics (Extended Abstract) 49

which 1’s are chosen independently with probability 0.25, so its complexity is
much less than n. The set S, is typical with respect to z but is too complex to
be optimal, since its (explicit or implicit) complexity conditional to n is n.

It follows that (programs for) optimal sets are typical statistics. Equality (9)
expresses the conditions on the algorithmic individual relation between the data
and the sufficient statistic. Later we demonstrate that this relation implies that
the probabilistic optimality of mutual information (1) holds for the algorithmic
version in the expected sense.

One can also consider notions of near-typical and mnear-optimal that arise
from replacing the 3 above by some slow growing functions, such as O(log(z))
or O(logk) as in [14,15].

3.3 Properties of Sufficient Statistics

We start with a sequence of lemmas that will be used in the later theorems.
Several of these lemmas have two versions: for implicit and for explicit sets. In
these cases, S will denote Simpl Or Sexpl respectively.

Below it is shown that the mutual information between every typical set and
the datum is not much less than K(K(z)), the complexity of the complexity
K (z) of the datum z. For optimal sets it is at least that, and for algorithmic
minimal statistic it is equal to that. The number of elements of a typical set is
determined by the following:

Lemma 1. Let k = K(x). If a set S is (implicitly or explicitly) typical for x
then I(z : S) £ k —log|S]|.

Proof. By definition I(z : S) £ K(x) — K (x | S*) and by typicality K (z | S*) =
log |S]. O

Typicality, optimality, and minimal optimality successively restrict the range
of the cardinality (and complexity) of a corresponding model for a datum z. The
above lemma states that for (implicitly or explicitly) typical S the cardinality
|S| = @25 1(:9) The next lemma asserts that for implicitly typical S the
value I(z : S) can fall below K (k) by no more than an additive logarithmic
term.

Lemma 2. Let k = K(x). If a set S is (implicitly or explicitly) typical for x
then I(z: S) > K(k)— K(I(z : S)) andlog|S| < k— K (k) + K (I(z : S)). (Here,
S is understood as Simpl 0T Sexpl Tespectively.)

Proof. Writing k = K (z), since
EEK(kx)E K(k)+ K(z | k) (10)

by (4), we have I(z: S) £ K(z) — K(z | §*) £ K(k) — [K(z | S*) — K(z | k*)].
Hence, it suffices to show K(z | S*) — K(z | k*) < K(I(z : S)). Now, from

50 Peter Gacs et al.

an implicit description S* we can find = log|S| £ k — I(z : S) and to recover
k we only require an extra K(I(z : S)) bits apart from S*. Therefore, K (k |
S*) < K(I(xz :S)). This reduces what we have to show to K(z | S*) < K(z |
k*) + K(k | S*) which is asserted by Theorem 1.

O

The term I(z : S) is at least K (k) — 2log K (k) where k = K (z). For z of
length n with & L n and K(k) ; (k) ; logn, this yields I(z : S) 3 logn —
2loglogn.

If we further restrict typical sets to optimal sets then the possible number of
elements in S is slightly restricted. First we show that implicit optimality of a
set with respect to a datum is equivalent to typicality with respect to the datum
combined with effective constructability (determination) from the datum.

Lemma 3. A set S is (implicitly or explicitly) optimal for x iff it is typical and
K(S|z*) £o0.

Proof. A set S is optimal iff (8) holds with equalities. Rewriting K (z,S) =
K(z)+ K(S | z*) the first inequality becomes an equality iff K (S | 2*) = 0, and
the second inequality becomes an equality iff K (x | S*) £ log|S]| (that is, S is a
typical set). O
Lemma 4. Let k = K(x). If a set S is (implicitly or explicitly) optimal for x,
then I(z: S) £ K(S) > K(k) and log|S| < k — K (k).

Proof. If S is optimal for z, then k = K (z) = K(S)+ K (z | S*) £ K(S)+log|S]|.
From S* we can find both K(S) £ I(S*) and |S| and hence k, that is, K (k) <
K(S). We have I(z : S) £ K(S) — K(S | *) £ K(S) by (4), Lemma 3,
respectively. This proves the first property. Substitution of I(z : S) K (k) in
the expression of Lemma 1 proves the second property. O

3.4 A Concrete Implicit Minimal Sufficient Statistic

A simplest implicitly optimal set (that is, of least complexity) is an implicit
algorithmic minimal sufficient statistic. We demonstrate that S¥ = {y : K(y) <
k}, the set of all strings of complexity at most k, is such a set. First we establish
the cardinality of S*:

Lemma 5. log|S*| £ k — K (k).

Proof. The lower bound is easiest. Denote by k* of length K (k) a shortest pro-
gram for k. Every string s of length & — K (k) — ¢ can be described in a self-
delimiting manner by prefixing it with k*c*, hence K (s) Sk—c+ 2logec. For
a large enough constant ¢, we have K(s) < k and hence there are £2(2k=K(k))
strings that are in S*.

For the upper bound: by (10) all x € S* satisfy K(x | k*) <k-— K(k) and
there can only be O(2¥=K(¥)) of them. O

Towards an Algorithmic Statistics (Extended Abstract) 51

R

i typical (initial constraint)

Fig. 1. Range of typical statistics on the straight line I(z : §) £ K(z) — log|S].

From the definition of S* it follows that it is defined by k alone, and it is the
same set that is optimal for all objects of the same complexity k.

Theorem 2. The set S* is implicitly optimal for every x with K(z) = k. Also,
we have K(S*) £ K (k).

Proof. From k* we can compute both k and k—1(k*) = k— K (k) and recursively
enumerate S*. Since also log|S*| £ k — K (k) (Lemma 5), the string k* plus a

fixed program is an implicit description of S* so that K (k) > K(S*). Hence,
K(z) > K(S*) +log|S*| and since K (z) is the shortest description by definition
equality (£) holds. That is, S* is optimal for z. By Lemma 4 K (S*) > K(k)

which together with the reverse inequality above yields K(S*) £ K (k) which

shows the theorem. O

Again using Lemma 4 shows that the optimal set S* has least complexity
among all optimal sets for z, and therefore:

Corollary 2. The set S* is an implicit algorithmic minimal sufficient statistic
for every x with K(z) = k.

All algorithmic minimal sufficient statistics S for z have K(S) £ K(k),
and therefore there are O(2K(¥)) of them. At least one such a statistic (S*) is
associated with every one of the O(2*) strings = of complexity k. Thus, while
the idea of the algorithmic minimal sufficient statistic is intuitively appealing,
its unrestricted use doesn’t seem to uncover most relevant aspects of reality.
The only relevant structure in the data with respect to a algorithmic minimal

52 Peter Gacs et al.

sufficient statistic is the Kolmogorov complexity. To give an example, an initial
segment of 3.1415... of length n of complexity logn + O(1) shares the same
algorithmic sufficient statistic with many (most?) binary strings of length logn +

o(1).

3.5 A Concrete Explicit Minimal Sufficient Statistic

Let us now consider representations of finite sets that are explicit in the sense
that we can compute the cardinality of the set from the representation. For
example, the description program enumerates all the elements of the set and
halts. Then a set like S¥ = {y : K(y) < k} has complexity = k [15]: Given
the program we can find an element not in S*, which element by definition has
complexity > k. Given S* we can find this element and hence S* has complexity

Lk Let
N =|S*,

then by Lemma 5 log N* £ k — K (k). We can list S* given k* and N* which
shows K (S*) < k.

One way of implementing explicit finite representations is to provide an ex-
plicit generation time for the enumeration process. If we can generate S* in time
t recursively using k, then the previous argument shows that the complexity of
every number ' > t satisfies K(¢', k) > k so that K(¢') S K(t'| k%) k- K(k)
by (4). This means that ¢ is a huge time which as a function of k rises faster than
every computable function. This argument also shows that explicit enumerative
descriptions of sets S containing by an enumerative process p plus a limit on the
computation time ¢ may take only I(p) + K (t) bits (with K(¢) < logt+2loglogt)
but logt unfortunately becomes noncomputably large!

In other cases the generation time is simply recursive in the input: S, = {y :
I(y) < n} so that K(S,) = K(n) < logn + 2loglogn. That is, this typical suffi-
cient statistic for a random string = with K (z) £ n+ K (n) has complexity K (n)
both for implicit and explicit descriptions: differences in complexity arise only
for nonrandom strings (but not too nonrandom, for K (z) £ 0 these differences
vanish again).

It turns out that some strings cannot thus be explicitly represented par-
simonously with low-complexity models (so that one necessarily has bad high
complexity models like S¥ above). For explicit representations, there are abso-
lutely non-stochastic strings that don’t have efficient two-part representations
with K(z) £ K(S) 4+ log|S| (z € S) with K(S) significantly less than K (z),
Section 4.

Again, consider the special set S¥ = {y : K(y) < k}. As we have seen earlier,
Sk itself cannot be explicitly optimal for = since K(S*) £ k and log N* £
k— K (k), and therefore K (S*)+log N* £ 2k — K (k) which considerably exceeds
k. However, it turns out that a closely related set (S,’%m below) is explicitly near-
optimal. Let I} denote the index of y in the standard enumeration of S*, where

Towards an Algorithmic Statistics (Extended Abstract) 53

all indexes are padded to the same length = k — K (k) with 0’s in front. For
K (z) = k, let m, denote the longest joint prefix of I¥ and N* and let

I* = m,0i,, N =m,ln,,
Sk ={y € S*:m,0 a prefix of I;j}

Theorem 3. The set Sﬁh is an explicit algorithmic minimal near-sufficient
statistic for x among subsets of S* in the following sense:

K (Sk) — K (k) — I(m,)] < K(I(m,)),
log |Sp,, | = k — K (k) —I(my).

Hence K (SE,) +1og|Sk | £ k+ K(I(m,)). Note, K(I(m,)) < log k+2loglogk.

The proof is given in the full paper [6]. We have not completely succeeded
in giving a concrete algorithmic exlicit minimal sufficient statistic. However, we
show [6] that S¥, is almost always minimal sufficient—also for the nonstochastic
objects of Section 4.

4 Non-Stochastic Objects

Every data sample consisting of a finite string z has an sufficient statistics in the
form of the singleton set {z}. Such a sufficient statistics is not very enlightening
since it simply replicates the data and has equal complexity with 2. Thus, one
is interested in the minimal sufficient statistics that represents the regularity,
(the meaningful) information, in the data and leaves out the accidental features.
This raises the question whether every x has a minimal sufficient statistics that
is significantly less complex than z itself. At a Tallinn conference in 1973 Kol-
mogorov (according to [14,2]) raised the question whether there are objects
that have no minimal sufficient statistics that have relatively small complexity.
In other words, he inquired into the existence of objects that are not in general
position (random with respect to) every finite set of small enough complexity,
that is, “absolutely non-random” objects. Clearly, such objects x have neither
minimal nor maximal complexity: if they have minimal complexity then the
singleton set {z} is a minimal sufficient statistics of small complexity, and if
x € {0,1}™ is completely incompressible (that is, it is individually random and
has no meaningful information), then the uninformative universe {0,1}" is the
minimal sufficient statistics of small complexity. To analyze the question better
we need a technical notion.

Define the randomness deficiency of an object x with respect to a finite set
S containing it as the amount by which the complexity of x as an element of
S falls short of the maximal possible complexity of an element in .S when S is
known explicitly (say, as a list):

5s(x) = log|S| - K(x | 9). (11)

54 Peter Gacs et al.

The meaning of this function is clear: most elements of S have complexity near
log | S|, so this difference measures the amount of compressibility in z compared
to the generic, typical, random elements of S. This is a generalization of the
sufficiency notion in that it measures the discrepancy with typicality and hence
sufficiency: if a set S is a sufficient statistic for then ds(z) = 0.

Kolmogorov Structure Function: We first consider the relation between
the minimal unavoidable randomness deficiency of z with respect to a set S
containing it, when the complexity of S is upper bounded by a. Such functional
relations are known as Kolmogorov structure functions. He did not specify what
is meant by K(S) but it was noticed immediately, as the paper [15] points out,
that the behavior of h,(a) is rather trivial if K(S) is taken to be the complexity
of a program that lists S without necessarily halting. Section 3.4 elaborates this
point. So, this section refers to explicit descriptions only. For technical reasons,
we introduce the following variant of randomness deficiency (11):

55(x) = log |S| - K (x | S, K(S)).

The function 3, (a) measuring the minimal unavoidable randomness deficiency
of z with respect to every finite set S of complexity K(S) < «. Formally, we
define

Pe(a) = min{ds(x) : K(S) < a},

and its variant 3% defined in terms of 8%. Note that 3, (K (z)) = 8%(K(z)) = 0.

Optimal Non-Stochastic Objects: We are now able to formally express
the notion of non-stochastic ojects using the Kolmogorov structure functions
Bz (), B2 (a). For every given k < n, Shen constructed in [14] a binary string
of length n with K(z) < k and 8,(k — O(1)) > n — 2k — O(log k).

Here, we improve on this result, replacing n — 2k — O(log k) with n — k and
using £* to avoid logarithmic terms. This is the best possible, since by choosing
S = {0,1}" we find log |S| — K(z | S, K(S)) = n — k, and hence B%(c) < n — k
for some constant ¢, which implies 8%(a) < 8(c) < n—k for every a > c. The
proof is relegated to the full version of this paper [6].

Theorem 4. For any given k < n, there are constants c1,ca and a binary string
x of length n with K (z | n) < k such that for all « < k — ¢; we have

Bila|n)>n—k—co.

Let = be one of the non-stochastic objects of which the existence is established
by Theorem 4. Substituting k = K (z|n) we can contemplate the set S = {z}
with complexity K (S|n) = k and z has randomness deficiency = 0 with respect
to S. This yields 0 £ (K (z|n)) Sn- K (x|n). Since it generally holds that
K(z|n) < n, it follows that K (z|n) = n. That is, these non-stochastic objects
have complexity K (z|n) % n and are not random, typical, or in general position

with respect to every set S containing them with complexity K (S|n) # n, but

Towards an Algorithmic Statistics (Extended Abstract) 55

they are random, typical, or in general position only for sets S with complexity
K(S|n) 2 nlike S = {z} with K(S|n) £ n. That is, every explicit sufficient
statistic S for z has complexity K (S|n) £ n, and {x} is such a statistic.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. A.R. Barron, J. Rissanen, and B. Yu, The minimum description length principle

in coding and modeling, IEEE Trans. Inform. Theory, 1T-44:6(1998), 2743-2760.

. T.M. Cover, Kolmogorov complexity, data compression, and inference, pp. 23-33

in: The Impact of Processing Techniques on Communications, J.K. Skwirzynski,
Ed., Martinus Nijhoff Publishers, 1985.

T.M. Cover and J.A. Thomas, Elements of Information Theory, Wiley, New York,
1991.

. R. A. Fisher, On the mathematical foundations of theoretical statistics, Philosoph-

ical Transactions of the Royal Society of London, Ser. A, 222(1922), 309-368.

Q. Gao, M. Li and P.M.B. Vitanyi, Applying MDL to learn best model granularity,
Artificial Intelligence, To appear. http://xxx.]anl.gov/abs/physics/0005062

P. Gécs, J. Tromp, P. Vitdnyi, Algorithmic statistics, Submitted.
http://xxx.lanl.gov/abs/math.PR /0006233

M. Li and P.M.B. Vitanyi, An Introduction to Kolmogorov Complezity and its
Applications, Springer-Verlag, New York, 2nd Edition, 1997.

A.N. Kolmogorov, Three approaches to the quantitative definition of information,
Problems Inform. Transmission 1:1 (1965) 1-7.

A.N. Kolmogorov, On logical foundations of probability theory, Pp. 1-5 in: Prob-
ability Theory and Mathematical Statistics, Lect. Notes Math., Vol. 1021, K. It6
and Yu.V. Prokhorov, Eds., Springer-Verlag, Heidelberg, 1983.

A.N. Kolmogorov and V.A. Uspensky, Algorithms and Randomness, STAM Theory
Probab. Appl., 32:3(1988), 389-412.

L.A. Levin, Laws of information conservation (nongrowth) and aspects of the foun-
dation of probability theory, Problems Inform. Transmission 10:3(1974), 206-210.
L.A.Levin Randomness conservation inequalities: information and independence in
mathematical theories, Information and Control 61 (1984) 15-37.

P. Martin-Lo6f, The definition of random sequences, Inform. Contr., 9(1966), 602-
619.

A Kh. Shen, The concept of (a, 8)-stochasticity in the Kolmogorov sense, and its
properties, Soviet Math. Dokl., 28:1(1983), 295-299.

A Kh. Shen, Discussion on Kolmogorov complexity and statistical analysis, The
Computer Journal, 42:4(1999), 340-342.

P.M.B. Vitanyi and M. Li, Minimum Description Length Induction, Bayesianism,
and Kolmogorov Complexity, IEEE Trans. Inform. Theory, 1T-46:2(2000), 446—
464.

V.V. V’yugin, On the defect of randomness of a finite object with respect to mea-
sures with given complexity bounds, SIAM Theory Probab. Appl., 32:3(1987), 508—
512.

V. V. V’yugin, Algorithmic complexity and stochastic properties of finite binary
sequences, The Computer Journal, 42:4(1999), 294-317.

Minimum Message Length Grouping of Ordered
Data

Leigh J. Fitzgibbon, Lloyd Allison, and David L. Dowe

School of Computer Science and Software Engineering
Monash University, Clayton, VIC 3168 Australia
{leighf,1lloyd,d1d}@csse.monash.edu.au

Abstract. Explicit segmentation is the partitioning of data into ho-
mogeneous regions by specifying cut-points. W. D. Fisher (1958) gave
an early example of explicit segmentation based on the minimisation of
squared error. Fisher called this the grouping problem and came up with
a polynomial time Dynamic Programming Algorithm (DPA). Oliver,
Baxter and colleagues (1996,1997,1998) have applied the information-
theoretic Minimum Message Length (MML) principle to explicit seg-
mentation. They have derived formulas for specifying cut-points impre-
cisely and have empirically shown their criterion to be superior to other
segmentation methods (AIC, MDL and BIC). We use a simple MML cri-
terion and Fisher’s DPA to perform numerical Bayesian (summing and)
integration (using message lengths) over the cut-point location parame-
ters. This gives an estimate of the number of segments, which we then
use to estimate the cut-point positions and segment parameters by min-
imising the MML criterion. This is shown to have lower Kullback-Leibler
distances on generated data.

1 Introduction

Grouping is defined as the partitioning, or explicit segmentation, of a set of
data into homogeneous groups that can be explained by some stochastic model
[8]. Constraints can be imposed to allow only contiguous partitions over some
variable or on data-sets that are ordered a priori. For example, time series seg-
mentation consists of finding homogeneous segments that are contiguous in time.

Grouping theory has applications in inference and statistical description
problems and there are many practical applications. For example, we wish to
infer when and how many changes in a patient’s condition have occurred based
on some medical data. A second example is that we may wish to describe Cen-
tral Processor Unit (CPU) usage in terms of segments to allow automatic or
manager-based decisions to be made.

In this paper, we describe a Minimum Message Length (MML) [18, 22, 19] ap-
proach to explicit segmentation for data-sets that are ordered a priori. Fisher’s
original Maximum Likelihood solution to this problem was based on the min-
imisation of squared error. The problem with Maximum Likelihood approaches
is that they have no stopping criterion, which means that unless the number of

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 56-70, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

Minimum Message Length Grouping of Ordered Data 57

groups is known a priori, the optimal grouping would consist of one datum per
group. Maximum Likelihood estimates for the cut-point positions are also known
to be inaccurate [11] and have a tendency to place cut-points in close proximity
of each other. MML inference overcomes both these problems by encoding the
model and the data as a two-part message.

The MML solution we describe is based on Fisher’s polynomial time Dynamic
Programming Algorithm (DPA), which has several advantages over commonly
used graph search algorithms. It is able to handle adjacent dependencies, where
the cost of segment i is dependent on the model for segment ¢ — 1. The algorithm
is exhaustive and can be made to consider all possible segmentations, allowing
for numerical (summing and) integration. Computing the optimal segmentation
of data into G groups results in the solution of all optimal partitions for 1..G
over 1..K, where K is the number of elements in the data-set.

Oliver, Baxter, Wallace and Forbes [3,11,10] have implemented and tested
a MML based solution to the segmentation of time series data and compared
it with some other techniques including Bayes Factors [9], AIC [1], BIC [15],
and MDL [12]. In their work, they specify the cut-point to a precision that
the data warrants. This creates dependencies between adjacent segments and
without knowledge of Fisher’s DPA they have used heuristic search strategies.
They have empirically shown their criterion to be superior to AIC, BIC and MDL
over the data-sets tested. However, the testing was only performed on data with
fixed parameter values and equally spaced cut-points.

We use a simple MML criterion and Fisher’s DPA to perform Bayesian (sum-
ming and) integration (using message lengths) over the cut-point parameter(s).
This gives an estimate of the number of segments, which we then use to esti-
mate the cut-point positions and segment parameters by minimising the MML
criterion. This unorthodox! coding scheme has the advantage that because we
do not state the cut-point positions, we do not need to worry about the precision
to which they are stated and therefore reduce the number of assumptions and
approximations involved. We compare our criterion with Oliver and Baxter’s
[11] MML, MDL and BIC criteria over a number of data-sets with and without
randomly placed cut-points and parameters.

This paper is structured as follows. Section 2 contains background infor-
mation on Fisher’s grouping problem and his algorithm. It also contains an
overview of the MML segmentation work by Oliver, Baxter and others [3,11, 10]
and an introduction to Minimum Message Length inference. Section 3 contains
a re-statement of the segmentation problem using our terminology. In Section
4, we describe the message length formula that we use to segment the data and
the approximate Bayesian integration technique we use to remove the cut-point
parameter. In Section 5, we perform some experiments and compare with the
previous work of Oliver, Baxter and others [10]. The concluding Sections, 6 and
7, summarize the results and suggest future work.

! Unorthodox in terms of the Minimum Message Length framework [18,22,19], where
parameters that are to be estimated should be stated in the first part of the message.

58 Leigh J. Fitzgibbon et al.

2 Background

2.1 The Grouping Problem

An ordered set of K numbers {a; : i = 0..K — 1} can be partitioned into G
contiguous groups in (g:i
we assume that the data has been ordered a priori?. For a given G, Fisher’s
solution to the grouping problem was to search for the contiguous partition

determined by G — 1 cut-points that minimised the distance, D:

) ways. We only consider contiguous partitions since

K—1
D = (a; —@;)? (1)
i=0

where @; represents the arithmetic mean of the a’s assigned to the group in which
1 is assigned. For a given GG, the partition which minimises D is called an optimal
or least squares partition. Whilst Fisher was concerned with grouping normally
distributed data (fitting piecewise constants), his techniques, and the techniques
derived in this paper can be applied to other models.

The exhaustive search algorithm used to find the optimal partition is based
on the following “Sub-optimisation Lemma”[8, page 795]:

Lemma 1. If Ay : A, denotes a partition of set A into two disjoint subsets Ay
and Az, if Pyx denotes a least squares partition of Ay into Gy subsets and if
Pyx denotes a least squares partition of Ay into G subsets; then, of the class of
sub-partitions of Ay : Ay employing G1 subsets over Ay and Gs subsets over As
a least squares sub-partition is Pyx : Pyx.

This lemma is possible due to the additive nature of the distance measure.
The algorithm based on this lemma is an example of a Dynamic Programming
Algorithm (DPA) and is computable in polynomial time. The DPA is a general
class of algorithm that is used in optimisation problems where the solution is the
sum of sub-solutions. Fisher’s algorithm can easily be expressed in pseudo-code.
In Figure 1 the pseudo-code for a function D(G) which returns the distance, D,
for a number of groups, G, up to an upper bound G, 4, is shown.

The time complexity of Fisher’s DPA is:

szl__gmaz_1‘v’,-:k__K_1min§-:kD[k — 1,5 — 1] + sumsqr(j,i) = O(Gmaz - K?)

(2)
In practice, G < K.

2.2 The Problem with the Maximum Likelihood Partition

How many segments? Given some data, where G is unknown, a practitioner
must view a range of least square partition solutions and then select one. For easy

2 This is what W. D. Fisher called the restricted problem.

Minimum Message Length Grouping of Ordered Data 59

Lookup functions:

sum(i, j) = sum[j + 1] — sum]i]
sumsqr(i, j) = sumsqr[j + 1] — sumli]
sum(i,j)?

D(i, j) = sumsqr(i, j) — “200

D(G) =D[G —-1,K —1]
Boundary conditions:

sum[0] := 0

sumsqr[0] := 0

Initial Step:

sumli] ;== sumli — 1] + a;—1,Yi=1. K
sumsqrli] := sumsqr[i — 1] + al_1,Vie1. x

DJ0,4] := D(0,4%), Vi—=o..k -1

General Step:

D[k, := min}_; D[k — 1, j — 1] + sumsqr(j,1),
Vi=1..Cman—1Vi=k..K—1

Fig.1. A Dynamic Programming Algorithm based on Fisher’s Sub-optimisation
Lemma.

data this may be satisfactory. However, for difficult data a human cannot detect
subtle differences between the solutions. Consider the least square partitions for
G = {2,3,4,5} of some generated data in Figures 3 to 6. From inspection of
these four hypotheses, it is difficult to determine the true number of segments.

Poor parameter estimates Even when we know the number of segments
in a data-set, the least squares partition may give poor estimates for the cut-
point positions, and segment parameters. Oliver and Forbes [11] found that
the Maximum Likelihood estimates for the cut-point position are unreliable. In
their experiments the Maximum Likelihood technique that was given the correct
number of segments had, on average, a higher Kullback-Leibler distance than a
MML based technique that did not know the correct number of segments. An
example of this can be seen in the least squares partitions in Figures 5 and 6.
The least squares and MDL methods tend to place cut-points in close proximity
of each other.

2.3 The Minimum Message Length Principle

The MML principle [18,22,19] is based on compact coding theory. It provides
a criterion for comparing competing hypotheses (models) by encoding both the
hypothesis and the data in a two-part message. For a hypothesis, H, and data,
D, Bayes’s theorem gives the following relationship between the probabilities:

Pr(H&D) = Pr(H) - Pr(D|H) = Pr(D) - Pr(H|D), (3)
which can be rearranged as:

Pr(H)- Pr(D|H)
Pr(D))

Pr(H|D) =

60

Leigh J. Fitzgibbon et al.

e-uh},-ulul“f Ovmrang e el 50

) | A

o o L e E]

Fig. 2. Some generated data.

[— sy a0 ee s s

L4 Y |u.|i nuh. =

[l

e

o "o an 0 E]

Fig. 3. Two segment least squares partition of Fig. 2.

aamsing 3 44220

:n-mm Ia-—.--u-;e11
e =
I 'U.\T T
N L

Fig. 4. Three segment least squares partition of Fig. 2.

F]

- - e i
G e 3 08 - qmq e a0 a8

£

o o L e E]

Fig. 6. Five segment least squares partition of Fig. 2.

Minimum Message Length Grouping of Ordered Data 61

After observing some data D, it follows that Pr(H|D) is maximised when
Pr(H) - Pr(D|H) is maximised. We know from coding theory that an event
with probability P can be transmitted using an optimal code in a message of
—log,(P) bits? in length. Therefore the length of a two-part message (MessLen)
conveying the parameter estimates (based on some prior) and the data encoded
based on these estimates can be calculated as:

MessLen(H&D) = —log,(Pr(H)) — log,(Pr(D|H)) bits (5)

The receiver of such a hypothetical message must be able to decode the data
without using any other knowledge. Minimising M essLen(H& D) is equivalent to
maximising Pr(H|D), the latter being a probability and not a density [20, section
2] [21, section 2] [5]. The model with the shortest message length is considered to
give the best explanation of the data. This interpretation of inductive inference
problems as coding problems has many practical and theoretical advantages
over dealing with probabilities directly. A survey of MML theory and its many
successful applications is given by Wallace and Dowe [19].

2.4 MML Precision of Cut-point Specification

K
G
coding scheme can be inefficient for small sample sizes and noisy data. Consider

two segments whose boundaries are not well-defined: the posterior distribution
will not have a well defined mode, but there may be a region around the boundary
with high probability. The MML principle states that we should use this region
to encode the data - we should only state the cut-point to an accuracy that the
data warrants, for otherwise we risk under-fitting.

Oliver, Baxter and others [3, 11, 10] studied the problem of specifying the cut-
point imprecisely. They derived equations to calculate the optimal precision with
which to specify the cut-point. Where the boundary between two segments is
not well-defined, it is cheaper to use less precision for the cut-point specification.
This reduces the length of the first part of the message but may increase the
length of the second part. Where the boundary is well-defined, it pays to use a
higher precision to save in the second part of the message. Empirical results [3,
11,10] have shown that specifying cut-points imprecisely gives better estimates
of the number of segments and lower Kullback-Leibler distances. Similar success
with MML imprecise cut-point specification has been found by Viswanathan,
Wallace, Dowe and Korb [17] for binary sequences.

We can encode the cut-point positions in log(:i) nits. However, using this

3 Problem Re-Statement

We consider a process which generates an ordered data-set. The process can
be approximated by, or is considered to consist of, an exhaustive concatena-
tion of contiguous sub-sets that were generated by sub-processes. We consider a

3 In the next sections of the paper we use the natural logarithm and the unit is nits.

62 Leigh J. Fitzgibbon et al.

sub-process to be homogeneous and the data generated by a process to consist
entirely of one or more homogeneous sequences.

Let y be a univariate ordered data-set of K numbers generated by some
process:

Yy = (y(]ayla'“ayK—l) (6)

which consists of G contiguous, exhaustive and mutually exclusive sub-sets:
s = (305817"'7SG71)7 (7)

where the members of each s; were generated by sub-process i, which can be
modelled with parameters 6;:

0 = (00,61,....0G-1), (8)

and likelihood:

f(y € s5i]0:) 9)

In some cases, the number of distinct sub-processes may be less than G. This
is most likely to occur in processes that have discrete states. For example, a
process that alternates between two discrete states would be better modelled as
coming from two, rather than G, sub-processes since parameters would be esti-
mated over more data. This is a common approach with implicit segmentation,
where segments are modelled implicitly by a Markov Model [16,7]. However,
the use of G sub-processes results in a more tractable problem and is what is
generally used for explicit segmentation. Moreover, in some cases we may wish
to model data which can be considered as coming from a drifting process rather
than a process with distinct states. In these cases, segmentation can be used to
identify approximately stationary regions and is best modelled as coming from
G distinct sub-processes.

The inference problem is to estimate some or all of : G, s, § and f(y € s;|6;).

4 Calculating the Message Length with Gaussian
Segments

In this section we describe the message length formula used to calculate the
expected length of a message which transmits the model and the data. Assume
that the size, K, of the data-set is known and given. In order for a hypothetical
receiver to decode the message and retrieve the original data, we must encode the
following: G, the number of segments; the cut-point positions, c|s; the parameter
estimates, 6;, for each segment s;; and finally the data for each segment using
the parameter estimates stated. We specify G using the universal log* code [13,
2], although we re-normalise the probabilities because we know that G < K.
This simplifies the problem to the specification of:

Minimum Message Length Grouping of Ordered Data 63

— the cut-point positions c|s,
— the parameter estimates 6; and data for each segment.

From Wallace and Freeman [22], the formula for calculating the length of a
message where the model consists of several continuous parameters § = (61, ...,6,)
is:

MessLen(H&D) = —log <%((‘Z|)®> + g(l + log ky,) nits (10)

where h(f) is a prior distribution over the n parameter values, f(y|6) is the
likelihood function for the model, F'(#) is the determinant of the Fisher Infor-
mation matrix and k,, is a lattice constant which represents the saving over the
quantised n-dimensional space.

In this paper we consider Gaussian segments with two continuous parameters
wand oy € s; ~ N{uj,05] so, 8; = (u5,0;). The lattice constant ko = ﬁ
[4], the Fisher Information, F'(§), for the Normal distribution [10] is:

2n?
F(p,0) = — (11)
o
and the negative log-likelihood is:
n 1 « _\9
—log f(y|p, o) = 510g27r+n10g0+ﬁ (z; — T) (12)
i=1

The prior distribution we use is non-informative based on the population

. 2 1 K-1 2 1 K-1_ |
variance, 0,,, = g1 Yimo (Wi — Hpop)” Where pip,, = 74 > im0 Yit

1

2
20'pop

Vj h(p;,05) = (13)
This is the prior used by Oliver, Baxter and others [11, section 3.1.3] [3,10],
although the prior V; h(p;,0;) = 15— from [18, section 4.2] or other priors
could also be considered. We use this prior, from Equation 13, to allow for a fair
comparison with their criterion [3,11,10].

We use Equation 10 to send the parameters 6; = (uj,0;) and data for each
segment. To encode the cut-point positions we use a simple coding scheme as-
suming that each combination is equally likely:

K-1
MessLen(c|K,G) = log (G 3 1) nits (14)

Based on Equation 10, the expected total length of the message is:
MessLen(H&D) = log" (G) + MessLen(c|K,G) (15)

G
+ Zl (—log (h(@)f(;;(jj;ﬂ&)) + g(l + log Fén)) nits

64 Leigh J. Fitzgibbon et al.

If we were to optimise the values of GG, s and 6 to minimise Equation 15,
we would under-estimate G since ¢ is being stated to maximum precision (see
Section 2.4). We avoid this problem by summing the probabilities of the various
MML estimates of 8; = (uj,0;)=0,...c—1 over all possible sub-partitions:

(K - 1>
G-1
P’I“Ob’(G) — Z e—MessLen(H&D)i (16)

i=1

where MessLen(H&D); is the message length associated with the ith sub-

partition from the (g

ciated with each such ith sub-partition. Prob’ gives unnormalised probabilities
for the number of segments. The ‘probabilities’ are unnormalised because, for
each ith sub-partition, the ‘probabilities’ consider only that part of the posterior
density of the 6; contained in the MML coding block.

We optimise Equation 16 to estimate G. This can be implemented by mod-
ifying Fisher’s DPA given in Figure 1 by replacing the distance function with
Equation 10 and changing the general step to sum over all sub-partitions:

:11) possible sub-partitions and the values of the éj asso-

D[k, :=LOGPLUS(D[k — 1,j — 1], sumsqr(j, 1))

17
Vi=1..Gman—1YVimk..K—1Vj=k..i (a7)

where the LOGPLUS function is used to sum the log-probabilities:
LOGPLUS(z,y) = —log,(e™® +e7¥) (18)

Using Equation 16 to estimate G we then optimise Equation 15 to estimate
the remaining parameters.

5 Experimental Evaluation

5.1 Generated Data

We now use Fisher’s DPA to infer the number of segments G, the cut-point
positions ¢|s and segment parameters 6; of some generated Gaussian data. The
criteria to be compared are:

— MML-I, Equations 15 and 16 from the previous section.
— MMLOB, MML Equation (6) from the paper Oliver and Baxter [10].

— BIC, using — log f(x|6) + 2umberparams 1,0 f¢,

; K
— MDL, using — log f(z|f) + SRnuoUsparams 4oy 4 Jog (G)

* However, normalising these ‘probabilities’ will give a reasonable approximation [5,
sections 4 and 4.1] [19, sections 2 and 8] to the marginal/posterior probability of G
which would be obtained by integrating out over all the 8; = (p;,0;).

Minimum Message Length Grouping of Ordered Data 65

The BIC and MDL criteria® were included since these were investigated and
compared by Oliver and Baxter [10, page 8], but not over the range of data that
we consider. AIC was omitted due to its poor performance in previous papers
[3,11,10]. We expect our criterion, MML-I, to perform better where the data
is noisy, the sample size is small or where the approximations break down in
MMLOB.

We have generated three different data-sets Sp, S; and Sa:

— Sp has fixed p’s and ¢’s and evenly-spaced cut-points; similar to Oliver and
Baxter [10].

— 51 has fixed p’s and ¢’s and (uniformly) randomly chosen cut-points (mini-
mum segment size of 3).

— S5 has random p’s and ¢’s drawn uniformly from [0..1], and (uniformly)
randomly chosen cut-points (minimum segment size of 3).

For each data-set, 100 samples were generated of sizes 20, 40, 80, 160 and 320
and with each of 1..7 segments. For Sp and 51, the variance of each segment is
1.0, and the means of the segments are monotonically increasing by 1.0.

5.2 Experimental Results

We have collated the data collected during the experiments to report: a count
of the number of times the correct number of cut-points were inferred (score
test); the average number of cut-points inferred; and the Kullback-Leibler (KL)
distance between the true and inferred distribution. The KL distance gives an
indication of how well the parameters for each segment are being estimated. This
will be affected by the inferred number of cut-points and their placement.

MDL and BIC were generally out-performed by the two MML methods
(MML-I and MMLOB) in all measures. The interesting comparison is between
MML-I and MMLOB.

Not all of the results could be included due to space limitations. The KL
distance and average number of cut-points for Sg and S; were omitted. For these
two data-sets, the average number of inferred cut-points was slightly better for
MML-I, and the KL distances for MML-I and MMLOB were both very similar.

The score test results have been included for all data-sets and can be seen in
Tables 1 to 2. Each table shows the number of times the correct number of cuts
k was inferred from the 100 trials for each of the sample sizes under investigation
(20,40,80,160 and 320). MML-I is more accurate than the other criteria for both
So and S; on the score test. The strange exception is for S5, where MMLOB is
not only more accurate than the other criteria, but has improved a seemingly
disproportionate amount over its results for Sy and S;.

Table 3 shows the average number of inferred cuts for data-set So. None of
the criteria appear to be excessively over-fitting.

5 We also note that MDL has been refined [14] since the 1978 MDL paper [12]. For a
general comparison between MDL and MML, see, e.g., [14, 19, 20] and other articles
in that special issue of the Computer Journal.

66 Leigh J. Fitzgibbon et al.

Table 4 shows the average Kullback-Leibler (KL) distances and standard
deviations for data-set Ss. The KL distance means and standard deviations
for MML-I are consistent for all sample sizes and are overall best, performing
exceptionally well on sample sizes K < 40. MMLOB, MDL and BIC appear to
break down for small samples in terms of both the mean and standard deviation.

MML-T has consistently low KL distances over all data-sets and is generally
able to more accurately infer the number of cut-points for Sy and S; than the
other criteria. MMLOB is more accurate at inferring the number of cuts for
data-set Sy but has substantially higher KL distances than MML-I, but slightly
better KL distances than BIC and MDL.

5.3 Application to Lake Michigan-Huron Data

We have used the MML-I criterion developed in this paper to segment the lake
Michigan-Huron data that was posed as a problem in W. D. Fisher’s original
1958 paper [8]. The DPA using our criterion was implemented in Java 2 (JIT)
and was able to consider the over 1012 possible segmentations (for G < 10) of the
lake data, with K = 96 in 2.1 seconds on a Pentium running at 200 mega-hertz.
It inferred that there are five segments; G = 5. A graph of the segmentation can
be seen in Figure 7. In Figure 8 we have segmented the lake data up to the year
1999. We can see that the segmentation identified in Figure 7 has been naturally
extended in Figure 8.

Fisher’s original least squares program was written for the “Illiac” digital
computer at the University of Illinois and could handle data-sets with K < 200
and G < 10 with running time up to approximately 14 minutes.

6 Conclusion

We have applied numerical Bayesian (summing and) integration for cut-point pa-
rameters in the grouping or segmentation problem. Using W. D. Fisher’s polyno-
mial time DPA, we were able to perform approximations to numerical Bayesian
integration using a Minimum Message Length criterion (MML-I) to estimate the
number of segments. Having done that, we then minimize the MML-I criterion
(Equation 15) to estimate the segment boundaries and within-segment param-
eter values. This technique, MML-I, was compared with three other criteria:
MMLOB [11], MDL and BIC. The comparison was based on generated data
with fixed and random parameter values. Using the Fisher DPA, we were able to
experiment over a larger range of data than previous work [3,11,10]. The MM-
LOB and MML-I criteria performed well and were shown to be superior to MDL
and BIC. The MML-I criterion, using Bayesian integration, was shown to have
overall lower Kullback-Leibler distances and was generally better at inferring the
number of cut-points than the other criteria.

Minimum Message Length Grouping of Ordered Data 67

":\\AAJ\/\/\‘”’ n ‘\
Wy P A 4 (\

= N YA o

AR I_

Y Vi

1w a0 0 720 %0

Fig. 7. Lake Michigan-Huron monthly mean water levels from 1860 to 1955 segmented
by MML-I. This is the data that W. D. Fisher originally considered in 1958.

A .
E i e | L. 4 " .
S e . /\\ SN S
== 4o AR LA
avdesmvita| A vk
* ~)’:’ f\ . u{\\ / X
¥ L

Fig. 8. Lake Michigan-Huron monthly mean water levels from 1860 to 1999 segmented
by MML-I.

Table 1. Positive inference counts for data-set Sp.

[k][Criterion[20 40 80 160 320[Total]

O/MML-I |86 93 93 100 95 | 467
MMLOB (93 94 93 100 84 | 464
MDL 89 96 99 100 99 | 483
BIC 76 88 95 98 96 | 453

1|MML-I |43 69 76 83 89| 360
MMLOB |28 57 86 89 77| 337
MDL 24 35 62 96 98| 315
BIC 42 55 83 89 96 | 365

2|MML-1 |3 2163 74 91| 252
MMLOB|6 12 46 84 81| 229
MDL 4 1013 52 98| 177
BIC 11 23 35 68 92| 229

3|[MML-I |0 3 17 51 79| 150
MMLOB|1 3 10 61 68| 143
MDL 2 5 5 14 76| 102
BIC 2 9 9 34 88| 142

4MML-I |0 0 6 44 77| 127
MMLOB|0 0 2 22 65| 89
MDL 01 1 2 45| 49
BIC 0 4 7 11 58| 80

5MML-I [0 0 0 19 66| 85
MMLOB|0O 0 0 7 64| 71
MDL 000 2 9 11
BIC 010 9 21| 31

6(MML-I {0 0 0O 5 49| 54
MMLOB|O 0 0 0 56| 56
MDL 000 0 3 3
BIC 000 1 8 9

68 Leigh J. Fitzgibbon et al.

Table 2. Positive inference counts for data-sets S1 and S» respectively.

[k[Criterion[20 40 80 160 320]Total] [k[Criterion[20 40 80 160 320]Total]

1|MML-I (32 4564 74 77| 292 1|MML-I |37 46 55 60 79 | 277
MMLOB |22 40 62 72 78 | 274 MMLOB |44 56 65 68 82 | 315
MDL 19 23 38 67 79| 226 MDL 42 49 54 68 82| 295
BIC 35 38 57 78 81| 289 BIC 49 51 59 69 85| 313

2[MML-1 |5 18 34 50 65| 172 2|MML-1 |11 26 27 50 43| 157
MMLOB|5 6 27 43 58| 139 MMLOB |16 33 35 57 57 | 198
MDL 4 2 12 27 48| 93 MDL 19 27 28 41 45| 160
BIC 14 9 23 37 54| 137 BIC 30 37 37 52 53| 209

3]MML-I |0 1 8 29 48| 86 3] MML-I |0 9 19 38 41| 107
MMLOB|0 1 9 16 50| 76 MMLOB|2 1230 37 51| 132
MDL 2 4 3 4 20| 33 MDL 3 7 16 24 33| 83
BIC 3 8 13 14 32| 70 BIC 5 1127 30 40| 113

4[MML-I |0 0 4 14 32| 50 4[MML-I |0 O 11 23 24| 58
MMLOB|0 0 3 12 30| 45 MMLOB|0 5 10 24 27| 66
MDL 000 1 2 3 MDL 0 4 7 10 20| 41
BIC 02 2 6 12| 22 BIC 0 6 14 15 25| 60

5MML-I |0 0 0 5 17| 22 5MML-I |0 0 8 14 19| 41
MMLOB|{0O 0 0 1 24| 25 MMLOB|{0 1 9 13 28| 51
MDL 011 0 2 4 MDL 01 4 8 7| 20
BIC 01 1 1 9 12 BIC 01 4 12 12| 29

6{MML-I |0 O O O 7 7 6(MML-I |0 0 4 9 18] 31
MMLOB|{0O 0 0 O 9 9 MMLOB|{0 0 3 9 20| 32
MDL 010 0 O 1 MDL 010 2 4 7
BIC 010 0 2 3 BIC 011 5 9 16

Table 3. Average inferred number of cuts for data-set S>.

k[Criterion] 20 40 80 160 320]

0{MML-I |0.150 £ 0.39 0.100 + 0.39 0.090 + 0.38 0.000 4+ 0.00 0.130 £+ 0.77
MMLOB [0.080 £+ 0.31 0.100 £ 0.41 0.100 £ 0.41 0.000 + 0.00 0.450 + 1.50
MDL 0.130 + 0.39 0.040 + 0.20 0.010 + 0.10 0.000 £ 0.00 0.010 £ 0.10
BIC 0.340 + 0.67 0.210 + 0.64 0.070 + 0.33 0.030 & 0.22 0.060 + 0.34
MML-I (0.490 £+ 0.61 0.640 =+ 0.64 0.890 + 0.82 0.960 + 0.78 1.040 + 0.85
MMLOB [0.480 £ 0.54 0.660 = 0.57 0.800 + 0.65 0.880 + 0.61 1.020 + 0.67
MDL 0.560 £+ 0.62 0.570 + 0.57 0.630 + 0.60 0.720 4+ 0.49 0.840 £+ 0.39
BIC 0.730 £+ 0.66 0.830 + 0.68 0.800 + 0.64 0.820 4+ 0.56 0.870 + 0.37
2(MML-I |0.530 + 0.69 0.980 4+ 0.89 1.360 £+ 1.04 1.640 £ 0.94 1.870 + 1.28
MMLOB|0.730 £+ 0.76 1.100 £ 0.86 1.170 £+ 0.79 1.580 + 0.77 1.760 + 0.91
MDL 0.750 + 0.80 1.010 + 0.88 1.020 + 0.82 1.220 £ 0.75 1.380 £ 0.71
BIC 1.110 + 0.82 1.270 4 0.87 1.270 £ 0.87 1.440 =+ 0.73 1.490 + 0.72
3[MML-I |0.460 + 0.64 1.060 4 0.97 1.880 £ 1.26 2.510 = 1.27 2.830 + 1.43
MMLOB |[0.790 £ 0.87 1.260 £ 1.04 1.950 + 1.10 2.170 + 0.89 2.750 + 0.99
MDL 0.890 £+ 0.91 1.100 + 0.96 1.620 4+ 1.06 1.780 4+ 0.95 2.090 £+ 0.84
BIC 1.220 4+ 0.91 1.440 4+ 1.09 2.010 £+ 1.11 2.000 £ 0.92 2.320 + 0.85
4|MML-I |0.400 £ 0.60 1.010 + 0.94 2.180 + 1.27 3.050 4+ 1.79 3.590 £ 1.54
MMLOB|0.750 £+ 0.86 1.360 £+ 1.24 2.410 + 1.16 2.750 + 1.39 3.600 + 1.38
MDL 0.860 £+ 0.96 1.130 + 1.12 1.980 + 1.08 2.080 =+ 1.18 2.620 £ 1.03
BIC 1.120 4+ 0.97 1.540 4 1.10 2.350 £+ 1.03 2.370 = 1.12 2.900 + 1.08
5(MML-I |0.330 4+ 0.62 1.080 =+ 1.17 2.260 £ 1.46 3.500 = 1.85 3.970 + 1.62
MMLOB [0.640 £+ 0.92 1.690 =+ 1.33 2.510 + 1.49 3.210 + 1.37 4.310 + 1.53
MDL 0.880 £+ 1.02 1.510 + 1.34 1.970 4+ 1.37 2.490 4+ 1.38 2.980 + 1.14
BIC 1.170 + 1.02 1.910 4+ 1.31 2.310 £+ 1.33 2.870 + 1.30 3.300 + 1.14
6 MML-I |0.340 4+ 0.61 1.200 4+ 1.30 2.530 £+ 1.69 3.660 £ 1.75 5.420 £+ 1.96
MMLOB |[0.640 £+ 0.86 1.810 £+ 1.46 2.910 + 1.56 3.610 + 1.46 5.010 + 1.56
MDL 0.730 £ 0.90 1.550 + 1.48 2.060 + 1.26 2.820 4 1.43 3.530 £ 1.23
BIC 1.100 + 0.96 1.930 + 1.39 2.680 + 1.28 3.280 =+ 1.36 3.900 + 1.21

[

Minimum Message Length Grouping of Ordered Data

Table 4. Kullback-Leibler distances for data-set Ss.

69

[k]Criterion] 20 40 80 160 320]
O[MMTL-T | 0.218 + 0.65 0.056 & 0.13 0.023 & 0.05 0.007 & 0.01 0.013 & 0.07
MMLOB| 0.422 + 1.69 0.283 4 2.08 0.034 + 0.11 0.007 =+ 0.01 0.049 + 0.28
MDL 0.716 & 2.40 0.288 = 2.10 0.016 & 0.03 0.007 + 0.01 0.007 =+ 0.04
BIC 1.159 + 3.08 0.820 + 3.24 0.132 =+ 1.05 0.064 + 0.52 0.046 + 0.27
T|MML-T | 0.588 & 2.14 0.261 & 0.29 0.154 & 0.23 0.173 £ 0.55 0.072 L 0.48
MMLOB [4.650 &+ 39.11 0.312 &+ 0.90 0.389 &+ 2.41 0.234 + 1.56 0.070 =+ 0.48
MDL [5.633 & 39.70 0.410 % 1.36 0.538 & 2.94 0.076 & 0.24 0.137 + 0.84
BIC 5.841 &+ 39.69 0.698 + 2.04 0.725 &+ 3.21 1.133 + 9.52 0.136 + 0.84
2|MMTL-T | 0.542 + 0.55 0.334 & 0.30 0.244 & 0.36 0.159 & 0.30 0.227 & 1.13
MMLOB| 0.835 + 1.62 0.447 + 1.22 0.248 + 0.74 0.119 =+ 0.21 0.145 + 1.05
MDL 1.590 + 4.13 1.255 + 7.05 0.260 = 0.70 0.086 & 0.14 0.035 + 0.05
BIC 1.625 + 3.45 0.759 + 1.70 1.022 + 4.76 0.196 + 0.59 0.045 + 0.07
3[MML-T | 0.620 £ 0.45 0.444 & 0.40 0.266 =+ 0.23 0.186 L 0.22 0.116 £ 0.25
MMLOB| 1.181 + 3.24 0.761 + 2.61 0.322 + 0.57 0.122 + 0.22 0.097 + 0.31
MDL 1.323 & 3.27 0.455 £ 0.61 0.470 = 0.99 0.132 = 0.27 0.085 = 0.31
BIC 1.650 &+ 3.62 0.754 £ 1.18 0.909 = 1.93 0.154 + 0.32 0.169 = 0.67
Z|MMT-T | 0.670 £ 0.48 0.507 & 0.48 0.361 & 0.28 0.274 & 0.43 0.176 & 0.28
MMLOB |5.499 + 40.13 1.141 + 4.70 0.454 + 1.30 0.854 + 6.52 0.542 + 3.08
MDL [6.013 £ 40.21 1.077 + 4.64 0.518 + 1.29 0.873 + 6.51 0.279 + 1.91
BIC 3.710 & 13.51 1.188 + 3.30 0.760 = 1.72 0.753 & 4.09 1.255 + 7.69
5[MML-T | 0.671 £ 0.38 0.562 £ 0.33 0.441 =+ 0.41 0.231 £ 0.20 0.202 £ 0.27
MMLOB (3.826 &+ 25.00 1.424 + 6.27 0.572 &+ 1.18 1.181 + 9.36 0.133 £ 0.15
MDL 2.096 + 4.69 4.298 + 25.49 0.755 & 3.86 1.173 & 9.36 0.118 & 0.15
BIC 2.476 + 4.78 4.554 £ 25.49 0.803 = 3.89 0.722 = 3.49 0.240 & 0.87
6|MMTL-T | 0.722 + 0.36 0.618 & 0.48 0.386 & 0.24 0.247 & 0.19 0.209 & 0.43
MMLOB |5.688 + 41.22 3.733 + 24.12 0.674 + 1.57 0.383 £ 1.03 0.259 + 0.62
MDL |5.756 =+ 41.21 4.930 =+ 28.90 0.816 + 1.81 0.994 -+ 4.87 0.169 + 0.42
BIC 4.375 4 22.72 3.160 & 10.83 1.206 =+ 2.49 1.223 + 4.92 0.294 + 1.23

7 Further Work and Acknowledgments

We have not directly investigated how well the various criteria are placing the
cut-points. The Kullback-Leibler distance gives an indirect measure since it is
affected by the cut-point positions. We intend to perform a more explicit inves-
tigation into the placement of cut-points.

As well as the Gaussian distribution, MML formulas have been derived for
discrete multi-state [17], Poisson, von Mises circular, and spherical Fisher distri-
butions [21, 6]. Some of these distributions and other models will be incorporated
in the future.

We thank Dean McKenzie for introducing us to the W. D. Fisher (1958)
paper and Rohan Baxter and Jonathan Oliver for providing access to the C
code used in Baxter, Oliver and Wallace [10].

References

1. H. Akaike. Information theory and an extension of the maximum likelihood princi-
ple. In B. N. Petrov and F. Csaki, editors, Proceeding 2nd International Symposium
on Information Theory, pages 267-281. Akademia Kiado, Budapest, 1973.

2. R. A. Baxter and J. J. Oliver. MDL and MML: Similarities and differences. Tech-
nical report TR 207, Dept. of Computer Science, Monash University, Clayton,
Victoria 3168, Australia, 1994.

70

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Leigh J. Fitzgibbon et al.

R. A. Baxter and J. J. Oliver. The kindest cut: minimum message length seg-
mentation. In S. Arikawa and A. K. Sharma, editors, Proc. 7th Int. Workshop on
Algorithmic Learning Theory, volume 1160 of LCNS, pages 83-90. Springer-Verlag
Berlin, 1996.

J.H. Conway and N.J.A Sloane. Sphere Packings, Lattices and Groups. Springer-
Verlag, London, 1988.

D. L. Dowe, R. A. Baxter, J. J. Oliver, and C. S. Wallace. Point estimation
using the Kullback-Leibler loss function and MML. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD98), volume 1394 of LNAI, pages
87-95, 1998.

D. L. Dowe, J. J. Oliver, and C. S. Wallace. MML estimation of the parameters of
the spherical Fisher distribution. In S. Arikawa and A. K. Sharma, editors, Proc.
7th Int. Workshop on Algorithmic Learning Theory, volume 1160 of LCNS, pages
213-227. Springer-Verlag Berlin, 1996.

T. Edgoose and L. Allison. MML markov classification of sequential data. Statistics
and Computing, 9:269-278, 1999.

W. D. Fisher. On grouping for maximum homogeneity. Jrnl. Am. Stat. Soc.,
53:789-798, 1958.

R. E. Kass and A. E. Raftery. Bayes factors. Journal of the American Statistical
Association, 90(430):773-795, 1995.

J. J. Oliver, R. A. Baxter, and C. S. Wallace. Minimum message length segmenta-
tion. In X. Wu, R. Kotagiri, and K. Korb, editors, Research and Development in
Knowledge Discovery and Data Mining (PAKDD-98), pages 83-90. Springer, 1998.
J. J. Oliver and C. S. Forbes. Bayesian approaches to segmenting a simple time
series. Technical Report 97/336, Dept. Computer Science, Monash University,
Australia 3168, December 1997.

J. J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471,
1978.

J. J. Rissanen. A universal prior for integers and estimation by minimum descrip-
tion length. Annals of Statistics, 11(2):416-431, 1983.

J. J. Rissanen. Hypothesis selection and testing by the MDL principle. Computer
Jrnl., 42(4):260-269, 1999.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461—
464, 1978.

S. Sclove. Time-series segmentation: A model and a method. Information Sciences,
29:7-25, 1983.

M. Viswanathan, C.S. Wallace, D.L. Dowe, and K. Korb. Finding cutpoints in
noisy binary sequences - a revised empirical evaluation. In 12th Australian Joint
Conference on Artificial Intelligence, 1999. A sequel has been submitted to Machine
Learning Journal.

C. S. Wallace and D. M. Boulton. An information measure for classification.
Computer Jrnl., 11(2):185-194, August 1968.

C. S. Wallace and D. L. Dowe. Minimum message length and Kolmogorov com-
plexity. Computer Jrnl., 42(4):270-283, 1999.

C. S. Wallace and D. L. Dowe. Rejoinder. Computer Jrnl., 42(4):345-357, 1999.
C. S. Wallace and D. L. Dowe. MML clustering of multi-state, Poisson, von Mises
circular and Gaussian distributions. Statistics and Computing, 10:73-83, 2000.

C. S. Wallace and P. R. Freeman. Estimation and inference by compact encoding
(with discussion). Journal of the Royal Statistical Society series B, 49:240-265,
1987.

Learning From Positive and Unlabeled Examples*

Fabien Letouzey, Frangois Denis, and Rémi Gilleron
{letouzey,denis,gilleron }Qlifl.fr

Equipe Grappa,
LIFL, UPRESA 8022 CNRS, Université de Lille 1
and Université Charles de Gaulle, Lille 3,
FRANCE

Abstract. In many machine learning settings, examples of one class
(called positive class) are easily available. Also, unlabeled data are abun-
dant. We investigate in this paper the design of learning algorithms from
positive and unlabeled data only. Many machine learning and data min-
ing algorithms use examples for estimate of probabilities. Therefore, we
design an algorithm which is based on positive statistical queries (esti-
mates for probabilities over the set of positive instances) and instance
statistical queries (estimates for probabilities over the instance space).
Our algorithm guesses the weight of the target concept (the ratio of posi-
tive instances in the instance space) with the help of a hypothesis testing
algorithm. It is proved that any class learnable in the Statistical Query
model [Kea93] such that a lower bound on the weight of any target con-
cept f can be estimated in polynomial time is learnable from positive
statistical queries and instance statistical queries only. Then, we design a
decision tree induction algorithm POSCA4.5, based on C4.5 [Qui93], using
only positive and unlabeled examples. We also give experimental results
for this algorithm.

1 Introduction

In Supervised Learning, the learner relies on labeled training examples. Thus,
for binary problems, positive examples and negative examples are mandatory
for machine learning and data mining algorithms such as decision tree induction
or neural networks. But, for many learning tasks, labeled examples are rare while
numerous unlabeled examples are easily available. Under specific hypotheses, the
problem of learning with the help of unlabeled data given a small set of labeled
examples was studied by Blum and Mitchell [BM98]. Supposing two views of
examples that are redundant but not correlated, they proved that unlabeled
examples can boost accuracy. Learning situations for which the assumption is
satisfied are described in [Mit99.

* This research was partially supported by “Motricité et Cognition : Contrat par ob-
jectifs région Nord/Pas-de-Calais”

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 71-84, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

72 Fabien Letouzey et al.

Labeled examples are expensive to obtain because they require human effort.
A “human expert” classifies each example in the teaching set as positive or neg-
ative. We argue that, in many machine learning settings, examples of one of the
two classes are abundant and cheap. From now on, we call this class the positive
class. A first example is web-page classification. Suppose we want a program that
classifies web sites as “interesting” for a web user. Positive examples are freely
available: it is the set of web pages corresponding to web sites in his bookmarks.
Moreover unlabeled web pages are abundant. Other examples are:

— diagnosis of diseases: positive data are patients who have the disease, unla-
beled data are all patients;

— marketing: positive data are clients who buy the product, unlabeled data are
all clients in the database.

Our hypothesis is true for all settings where it is expensive or difficult to label a
set of instances in order to obtain a learning sample. Therefore, we address the
problem of learning with positive data and unlabeled data only. In a previous
paper [DDGL99], we have given evidence — with both theoretical and empirical
arguments — that positive examples and unlabeled examples can boost accuracy
of many machine learning algorithms. It was noted that learning with positive
and unlabeled data is possible as soon as the weight of the target concept (i.e.
the ratio of positive examples) is known by the learner. An estimate of the weight
can be obtained from a small set of labeled examples. Here with a hypothesis
testing algorithm, we present learning algorithms which only use positive and
unlabeled data.

The theoretical framework is presented in Section 2. Our learning algorithm
is defined and proved in Section 3. It is applied to tree induction in Section 4

2 Learning Models of Learning from Positive and
Unlabeled Examples

2.1 Learning models from labeled examples

First, let us recall the probably approximately correct model (PAC model for
short) defined by Valiant [Val84]. In the PAC model, an adversary chooses a
hidden {0,1}-valued function from a given concept class and a distribution over
the instance space. The goal of the learner is to output in polynomial time,
with high probability, a hypothesis with the following property: the probability
is small that the hypothesis disagrees with the target function on an example
randomly chosen according to the distribution. The learner gets information
about the target function and the hidden distribution from an example oracle.
The PAC model is the basic model in Computational Learning Theory [KV94].
Many variants of the model have been considered (see the fundamental paper of
Haussler, Kearns, Littlestone and Warmuth [HKLW91]). For instance, in the two-
button model, there are separate distributions and example oracles for positive
and negative examples of a concept. It was proved equivalent to the PAC model.

Learning From Positive and Unlabeled Examples 73

One criticism of the PAC model is that it is a noise free model. There-
fore extensions, in which the label provided with each random example may
be corrupted with random noise, were studied. The classification noise model
CN model for short) was first defined by Angluin and Laird [AL88]. In order
to define and study learning algorithms which are robust to classification noise,
Kearns [Kea93] has defined the statistical query model (SQ model for short). In
this model, the example oracle is replaced by a weaker oracle which provides
estimates for probabilities over the sample space. It is clear that given access
to the example oracle, it is easy to simulate the statistics oracle by drawing a
sufficiently large set of labeled examples, i.e. any class learnable from statistical
queries is PAC learnable. There is a general scheme which transforms any SQ
learning algorithm into a PAC learning algorithm. It is also proved in [Kea93]
that the class of parity functions is learnable in the PAC model but cannot be
learned from statistical queries. Also any class learnable from statistical queries is
learnable with classification noise. The SQ model allows to define noise-tolerant
learning algorithms because there is a general method which transforms any SQ
learning algorithm into a CN learning algorithm. Many machine learning algo-
rithms only use examples in order to estimate probabilities, thus they may be
viewed as SQ learning algorithms. This is the case for induction tree algorithms
such as C4.5 [Qui93] and CART [BFOS84].

Also interesting for our purpose is a variant of the CN model, namely the
constant-partition classification noise model (CPCN model for short) which was
defined by Decatur [Dec97]. In this model, the labeled example space is parti-
tioned into a constant number of regions, each of which may have a different
noise rate. An interesting example is the case where the rate of false positive ex-
amples differs from the rate of false negative examples. Following the results of
Kearns, it was proved by Decatur that any class learnable from statistical queries
is also learnable with constant-partition classification noise. The proof uses the
hypothesis testing property: a hypothesis with small error can be selected from a
set of hypotheses by selecting the one with the fewest errors on a set of CPCN
corrupted examples.

If we confuse in the notations the name of the model and the set of learnable
classes, we can write the following inclusions:

SQ CCPCN CCN CPAC (1)
SQ C PAC (2)
To our knowledge, the equivalences between the models CN and SQ or be-

tween the models CN and PAC remain open despite recent insights [BKW00]
and [Jac00].

2.2 Learning models from positive and unlabeled examples

The learning model from positive examples (POSEX for short) was defined by
Denis [Den98]. The model is similar to the PAC model with the following dif-
ference: the learner gets information about the target function and the hidden

74 Fabien Letouzey et al.

distribution from two oracles, namely a positive ezample oracle and an instance
oracle. At each request by the learner, the instance oracle draws an element of
the instance space X, i.e. an unlabeled example, according to the hidden distri-
bution D. At each request by the learner, the positive example oracle draws a
positive example according to the hidden distribution Dy where f is the target
concept and Dy is defined by:

D) = {é)(w)/D(f) itz € f,)

otherwise.
It was shown in [Den98] that any class learnable in the CPCN model is learnable
in the POSEX model. The hint of the proof is to draw examples from the positive
oracle with probability 2/3 with a positive label and examples from the instance
oracle with probability 1/3 with a negative label, and then to use a CPCN
algorithm. We will use such a scheme in our hypothesis testing algorithm in the
next section.

The learning model from positive queries (POSQ for short) was also defined
in [Den98|. In the SQ model, the oracle provides estimates for probabilities ac-
cording to statistical queries. We slightly modify definitions of queries, but it
is easy to show that it is equivalent to considering a statistical oracle which
provides, within a given tolerance 7, estimates for probabilities D(f N A) and
D(f N A) where f is the target concept, f its complement and A any subset —
for which membership is decidable in polynomial time — of the instance space.
In the POSQ model, there are a positive statistical oracle which provides esti-
mates for probabilities D¢(A) and an instance statistical oracle which provides
estimates for probabilities D(A) within a given tolerance. It was shown that any
class learnable in the SQ model such that the weight D(f) of any target concept
f can be estimated in polynomial time with these two oracles is learnable in the
POSQ model. It was also shown that the class of k&-DNF and the class of k-DL
are learnable in the POSQ model. To summarize, the following inclusions hold:

POSQ C SQ C CPCN C POSEX C PAC (4)
CPCN C CN C PAC (5)
SQ c POSEX C PAC (6)

The inequality between SQ and POSEX is because the class of parity functions is
in POSEX but not in SQ. The equivalences between POSQ and SQ and between
POSEX and PAC remain open. We conjectured that the class of complementary
sets of lattices is PAC learnable but not POSEX learnable.

3 Learning Algorithm from Positive and Unlabeled
Queries

We address in the present paper, the design of machine learning algorithms with
positive and unlabeled examples that can be derived, using a general scheme,
from learning algorithms in the SQ model. We transform our algorithm into a
decision tree induction algorithm in the next section.

Learning From Positive and Unlabeled Examples 75

3.1 Introduction of the algorithm

In a previous paper [DDGL99], we considered the problem of learning with the
help of positive and unlabeled data, given either a small number of labeled
examples, or an estimate of the weight of the target concept. We presented
experimental results showing that positive examples and unlabeled data can
efficiently boost accuracy of the statistical query learning algorithm for monotone
conjunctions in the presence of classification noise, and experimental results for
decision tree induction.

Let us suppose that a concept class C is learnable in the SQ model by a
learning algorithm L and let f be the target concept. A statistical query made
by the learner provides estimates of probabilities D(f N A) and D(f N A) for
some subset A of the instance space chosen by the learner. Basic probabilities
allow to write the following equations:

D(f 1 4) = D(f) x Dy(4) -
D(F N A) = D(A) - D(f N 4)
Dy (A) can be estimated with the positive statistical oracle, D(A) can be esti-
mated with the instance statistical oracle. Consequently, given an SQ algorithm,
it is quite easy to modify it in order to obtain a POSQ algorithm provided an es-
timate of the weight of the target concept D(f). This estimate can be obtained,
either by extra information, or with the help of a small set of labeled examples.
Here, we suppose that the weight of the target concept is not known by the
learner. The problem is to calculate an estimate of it. This can be done in the
POSQ model for some specific classes of concept: k-DNF, k-DL (see [Den98])
but our aim is to define a generic method that transforms an SQ algorithm
into a POSQ algorithm. Our solution, which is detailed in the next section, is
an algorithm which guesses the weight of the target concept and then selects a
hypothesis. The difficulty is that the hypothesis testing algorithm can only use
information via the positive statistical oracle and the instance statistical oracle.

3.2 Learning algorithm from positive statistical queries and
instance statistical queries

Let us consider a concept class C' learnable in the SQ model by a learning algo-
rithm L and let f be the target concept. We design a POSQ learning algorithm
based on algorithm L. In the POSQ model, for any subset A of the instance
space, we can calculate estimate Dj(A) of Ds(A) with the positive statistical
oracle PSTAT and estimate D(A) of D(A) with the instance statistical oracle
IST AT within a given tolerance. Moreover, we suppose that D(f) € (0, 1] and
that a minimal bound ~ is known for D(f), that is 0 < v < D(f) < 1. Let €
be the desired accuracy for the algorithm and let 7,,,, be a quantity smaller
than any of the tolerances 7 needed by L (but still an inverse polynomial in
the learning problem parameters). The POSQ learning algorithm is given in
Figure 1.

76 Fabien Letouzey et al.

A consequence of this result is that whenever a lower bound on the weight
of the target concept is known a priori, a class learnable in the SQ model is
learnable in the POSQ model.

POSQ learning algorithm
parameters: SQ learning algorithm L; v such that 0 < v < D(f) <1
input: €
Construction of a hypothesis set
Sete'to%xﬁ;xe
set N to [—=—] ; set o to 55
fori=1to N
the current estimate of D(f) is p; = (2i — 1)«
run L with accuracy € using oracles PSTAT, IST AT within accuracy ~ziz
and equations 7 ; output h;
Hypothesis testing algorithm
fori=1to N
call PSTAT with input h; within accuracy 15
call IST AT with input h; within accuracy 15—2
set é(h;) to 2D (h;) + D(hs)
output: h = argmin é(h;)

i

Fig. 1. learning algorithm from positive and unlabeled queries

The algorithm iterates over larger guesses for D(f). At each guess, the sta-
tistical query learning algorithm is called. But only positive and instance queries
are available, thus when L makes a query, equations 7 are used with the cur-
rent estimate p; of D(f) and the estimates returned by the oracles PST AT and
ISTAT.

The hypothesis testing part of the algorithm selects the hypothesis which
minimizes the quantity é(h;). Minimizing é(h;) is equivalent to minimizing an
estimate of the error rate according to the following distribution: with probability
2/3 draw a positive example and label it as positive; with probability 1/3 draw
an unlabeled example and label it as negative. This can be seen as: choosing a
hypothesis h approximately consistent with positive data — when minimizing the
first term of the sum — while avoiding over-generalization — when minimizing the
second term.

3.3 Proof of the algorithm
Lemma 1. There exists i € {1,... ,N} such that error(h;) < €.

Proof. There exists i such that D(f) € [p;—a, p; +a] because, by definition of p;,
U, [pi—a, pi+a] = [0, 1]. For that value, p; is an estimate of D(f) within accuracy
Pmin because o < Tiv, For all queries made by L, the oracles PSTAT and
IST AT are called with accuracy ™2 and equations 7 are used. It is easy to prove

Learning From Positive and Unlabeled Examples 77

that estimates for algorithm L are made within accuracy 7. Consequently, by
hypothesis on L, L outputs some h; such that error(h;) < €.

Lemma 2. Let h and b’ be two hypotheses such that error(h) < 1 x ﬁ X €

and error(h') > €, then e(h') — e(h) > §, where, for any concept g, error(g) =
D(fAg) is the (classical) error and e(g) is defined by e(g) = 2D¢(g) + D(g).

Proof. By hypothesis on h and &', error(h) < % x 52 x error(h'). The weight
of the target concept satisfies: 0 < v < D(f) < 1;let r(z) = 5%, r is increasing,
therefore: error(h) < & x % x error(h'). We obtain the following inequality:
2-D(J)
D(f)
Now, for any concept g, error(g) = D(f Ng) + D(f N g) which leads to the
following equation:

x error(h) < % x error(h') (8)

error(g) = D(f) x D¢(g) + (1 = D(f)) x D3(g) (9)
Using inequation 8 and equation 9, we obtain:
2 - D(f) T 1 7 i
W[D(f)Df(h) + (1= D(f))Dg(h)] < [D(f)Ds (W) + (1 = D(f)) D¢ (1)]
(10)

Now, with 2 — D(f) > D(f) and 1 - D(f) < (1 - D(f))(2 - D(f))/D(f) and
inequation 10, we obtain:

2= D(f)Ds(h) + (1 = D(f))Dy(h) < %[(2 = D(f)Ds(I) + (1 = D(f)) D5(h')]

(11)
Also, let us denote 2D¢(g) + D(g) by e(g), it is easy to prove that
e(g) = (2—D(f)) x D¢(g) + (1 = D(f)) x D3(g) + D(f) (12)
Inequation 11, and equation 12 allow to prove the following inequality:
1
e(h) = D(f) < 5 x (e(h') = D(f)) (13)

As a consequence of this last inequality and because of the inequality e(g) >
error(g) +D(f), we get: e(h') —e(h) > % x (e(h') = D(f)) > 3 x error(h') > Le.

Proposition 1. The output hypothesis satisfies error(h) < € and the running
time is polynomial in 1/e and 1/~.

Proof. all estimates é(h;) of e(h;) are done within accuracy § and lemmas 1
and 2 ensure that the output hypothesis satisfies error(h) < e.

The number of hypotheses is N which is linear in 1/7,,:,. We have supposed
for sake of clarity in the definition of the algorithm that 7,,;, was fixed and
known to the learner. Actually, 7., is polynomial in the input accuracy of L,
therefore Ty, is polynomial in €' that is also polynomial in € and ~. It is easy
to verify that all queries are made within a tolerance polynomial in € and +.

78 Fabien Letouzey et al.

3.4 Comments on the statistical queries models

Whether or not any SQ algorithm can be transformed into a POSQ algorithm
remains an open question. It has been proved in [Den98] that this transformation
is possible when the weight of the target concept can be estimated from the
oracles PSTAT and ISTAT in polynomial time. We improve this result showing
that it is possible when a lower bound on the weight of the target concept is
given to the learner. But, the running time of the algorithm is polynomial in the
inverse of this lower bound.

Let us consider a concept class C which is SQ learnable. C satisfies the prop-
erty Lowerbound if there exists an algorithm W which, for any f in C, for any
distribution D on X, W with input ¢, given access to PSTAT, ISTAT, then W
outputs yes if D(f) < §, no if D(f) > €, ?if § < D(f) < € in time polynomial
in 1/e. Then we have the following result:

Proposition 2. Any SQ learnable class which satisfies Lowerbound is POSQ
learnable.

Proof. Consider the following algorithm:

input: €
if W outputs yes
output function 0
else
run the POSQ learning algorithm with parameter v =

5 and input €

It is easy to prove that this algorithm is a learning algorithm from positive and
instance statistical queries using Proposition 1 and definition of W.

Proving the property Lowerbound for every SQ learnable concept class would
imply the equality between SQ and POSQ.

4 Decision Tree Learning with only Positive and
Unlabeled Examples

4.1 C4.5POSUNL

In a previous paper [DDGL99], we presented an algorithm called C4.5POSUNL.
It is a decision tree induction algorithm based on C4.5 with the following differ-
ences:

— only binary classification problems are considered. The classes are denoted
by 0 and 1; an example is said to be positive if its label is 1.
— C4.5POSUNL takes as input:
1. a (small) set of labeled examples LAB
or
an estimate D(f) of the weight of the target concept D(f);

Learning From Positive and Unlabeled Examples 79

2. a set of positive examples POS;
3. a set of unlabeled examples UN L.

— the splitting criterion used by C4.5 is based on the information gain (or the
gain ratio), itself based on the entropy. The gain is calculated from ratio
of examples satisfying some property, thus it is calculated from statistical
queries. The calculation of the gain in C4.5POSUNL is derived from classical
formulas using equations 7. Let POS™ (respectively UNL™) be the set of
positive (respectively unlabeled) examples associated with the current node
n, and let ﬁ(f) be an estimate of the weight of the target concept D(f), we
obtain the following equations:

P1 = TposT X TONLH

po=1-m

Entropy(n) = —pi logy p1 — polog, po

Gain(na t) = Entropy(n) - EveValues(t) }g%i/g} Entropy(m})

|POS™| . |UNL| xﬁ(f)

(14)

where the cardinality of set A is denoted by |A|, Values(t) is the set of every
possible value for the attribute test ¢, UNL} is the set of examples in UNL"
for which t has value v, and nv is the node below n corresponding to the
value v for the attribute test .

4.2 POSC4.5: An induction tree algorithm from positive and
unlabeled examples only

As for C4.5POSUNL, we only consider binary classification problems and we
suppose that one target class has been specified as positive. The learning al-
gorithm is described in Figure 2. The algorithm takes as input a set POS of
examples of the target class and a set UNL of unlabeled examples. The algo-
rithm splits the set POS (respectively UNL) into two sets POSy, and POSt
(respectively UN Ly, and UN L) using the usual values 2/3 and 1/3. The POSQ
learning algorithm is called with the following modifications:

— the estimate ﬁ(f) of D(f) takes the successive values 0.1, ..., 0.9;

— the SQ-like algorithm is C4.5POSUNL with inputs the current estimate of
D(f), the learning sets POS, and UNLy;

— the best value of D(f) is chosen according to the minimal estimate é(h) of
e(h) where the estimate is done with the test sets POSt and UN Lr;

— run C4.5POSUNL with inputs the best value of D(f) and the sets POS and
UNL.

4.3 Experiments with Decision Lists

A decision list over z1,. .. , T, is an ordered sequence L = (mq,b1),... , (mp,by)
of terms, in which each m; is a monomial over 21, ..., 2y, and each b; € {0, 1}.
The last monomial is always m, = 1. For any input a € {0, 1}", the value L(a)

80 Fabien Letouzey et al.

POSC4.5
input: POS and UNL
Split POS and UN L with ratios 2/3, 1/3 into POSr, POSt, UNLy and UNLt
fori=1to9
the current estimate of D(f) is 1_1_'0
run C4.5POSUNL with input {5, POSr and UN Ly, and output h;

iy |{z€POSr|hi(2)=0}| | |{x€UNLx|h;(z)=1}|
set é(h;) to 2 OS] + TN

j = argmin é(h;)

run C4.5POSUNL with input -, POS and UNL and output h

10°

Fig. 2. learning algorithm from positive and unlabeled queries

is defined as bj, where j is the smallest index satisfying mj(a) = 1. We only
consider 1-decision list where each monomial is a variable x; or its negation T;.
We set p to 11 and n to 20. The random choice of target f, weight D(f) and
distribution D are done as follows:

— a target decision list f is chosen randomly;

— For any a € {0,1}", a weight w,, is chosen randomly in [0, 1);

— a normalization procedure is applied to the two sets of weights {w, | f(a) =
1} and {w, | f(a) = 0}. Thus we get two distributions D; on f and D, on

)
— a weight p for the target concept is chosen (depending on the experiment);

— D is defined by: for every a, D(a) = pDi(a) + (1 — p)D2(a). Note that
D(f) =p.

We compare three algorithms:

— C4.5POSUNL(LAB) which takes as input a set LAB of labeled examples —
in order to compute an estimate of D(f) — a set POS of positive examples
and a set UN L of unlabeled examples;

— C4.5POSUNL(D(f)) which takes as input the exact value of D(f), a set
POS of positive examples and a set UN L of unlabeled examples;

— POSC4.5 which takes as input a set POS of positive examples and a set
UN L of unlabeled examples.

In the plots, the error rates and target weights are expressed in percent.

Experiment 1. We set D(f) to 0.5, the size of POS is equal to the size of
UNL and ranges from 50 to 1000 by step 50, the size of LAB is fixed to
25. For a given size of POS, we iterate 100 times the experiment EXP: a
target f is drawn, a distribution D is chosen, sets LAB, POS and UNL are
drawn randomly, we run the three algorithms and calculate the error rate
of the output hypothesis on a large test set of 10000 examples. We average
the error rates over the 100 experiments. The results are given in Figure 3.
The learning algorithm POSC4.5 performs as well as C4.5POSUNL(D(f))
where the exact value of D(f) is given to the learner.

Learning From Positive and Unlabeled Examples 81

Experiments 2 and 3. The only difference is the size of POS: 1000 for exper-
iment 2 and 100 for experiment 3. For both experiments, the size of UN L is
fixed to 1000, D(f) ranges from 0 to 1 by step 0.05, the size of LAB is fixed
to 25. For a given value of D(f), we average the error rates over the 100
experiments EXP. The results are given in Figs. 4 and 5. The learning algo-
rithm POSC4.5 performs as well as C4.5POSUNL(D(f)) only for values of
D(f) which are not close from 0 or 1. The problem when D(f) is close to 1 is
that positive and unlabelled examples are drawn from similar distributions,
whereas they are associated with opposit labels (1 for positive examples and
0 for unlabelled examples); this brings noise.

Experiment 4. The only difference with Experiment 2 is that classification
noise with a noise rate 0.2 is applied. The results are given in Figure 6.
The learning algorithm POSC4.5 performs as well as C4.5POSUNL(D(f))
for values for D(f) greater than 0.45. We comment this problem in the
conclusion of the paper.

The reason why POSC4.5 can sometimes outperform C4.5POSUNL(D(f))
is that it can select an inexact estimate D(f) of D(f) during the hypothesis
selection phase because it brings a lower error rate due to biases in C4.5 internal
heuristics (with this value C4.5 will make different choices).

4.4 Experiments with UCI problems

We consider two data sets from the UCI Machine Learning Database [MMO8]:
kr-vs-kp and adult. The majority class is chosen as positive. The size of LAB is
fixed to 25. We let the number of positive and unlabeled examples vary, and com-
pare the error rate of C4.5POSUNL(LAB), C4.5POSUNL(D(f)) and POSC4.5.
The results can be seen in Figs. 7 and 8. For kr-vs-kp, the plots are similar, the
least good results are obtained by POSC4.5. This seems natural because it uses
less information. Surprisingly, POSC4.5 obtains the best results for the data set
adult. One reason is the number of examples. The reader should note that the
results on the same data set are disappointing when the positive class is the
minority class.

5 Conclusion

Experimental results show that the criterion used in the hypothesis testing al-
gorithm is biased in favor of large values of D(f). For small values of D(f),
the theoretical results of the present paper show that a large (but polynomial)
number of examples is required.

Using a different weighting in the selection criterion leads to a bias in favor
of different values of D(f). So we search for improvements of our algorithm
following the next ideas:

— If a lower bound and an upper bound for D(f) are given to the learner, the
estimates for D(f) are chosen between this bounds and a better criterion for
our hypothesis testing algorithm could be selected.

82 Fabien Letouzey et al.

— The algorithm could find an estimate of D(f) by successive approximations
obtained by iterations of the POSQ algorithm, using either the weight D(h)
of the selected hypothesis h or the target weight estimate which was used to
produce that hypothesis.

References

[ALSS]

[BFOS84]

[BKWO00]

[BMOSg|

[DDGLYY]

[Dec97]

[Den9s]

D. Angluin and P. Laird. Learning from noisy examples. Machine Learning,
2(4):343-370, 1988.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification
and regression trees. Technical report, Wadsworth International, Monterey,
CA, 1984.

A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. In Proceedings of the 32nd Annual
ACM Symposium on Theory of Computing, 2000. To appear.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proc. 11th Annu. Conf. on Comput. Learning Theory, pages
92-100. ACM Press, New York, NY, 1998.

F. DeComité, F. Denis, R. Gilleron, and F. Letouzey. Positive and unla-
beled examples help learning. In ALT 99, 10th International Conference on
Algorithmic Learning Theory, volume 1720 of LNAI, pages 219-230, 1999.
S. E. Decatur. Pac learning with constant-partition classification noise and
applications to decision tree induction. In Proceedings of the Fourteenth
International Conference on Machine Learning, 1997.

F. Denis. PAC learning from positive statistical queries. In Michael M.
Richter, Carl H. Smith, Rolf Wiehagen, and Thomas Zeugmann, editors,
Proceedings of the 9th International Conference on Algorithmic Learning
Theory (ALT-98), volume 1501 of LNAI, pages 112-126, Berlin, October 8-
10 1998. Springer.

[HKLW91] D. Haussler, M. Kearns, N. Littlestone, and M. K. Warmuth. Equivalence

[Jac00]

[Kea93]

[KV94]
[Mit99]
[MMO8]
[Qui93]

[Val84]

of models for polynomial learnability. Inform. Comput., 95(2):129-161, De-
cember 1991.

J. Jackson. On the efficiency of noise-tolerant pac algorithms derived from
statistical queries. In Proceedings of the 13th Annual Conference on Com-
putational Learning Theory, 2000. To appear.

M. Kearns. Efficient noise-tolerant learning from statistical queries. In
Proceedings of the 25th ACM Symposium on the Theory of Computing, pages
392-401. ACM Press, New York, NY, 1993.

M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learn-
ing Theory. MIT Press, 1994.

Tom Mitchell. The role of unlabeled data in supervised learning. In Pro-
ceedings of the Sizth International Colloquium on Cognitive Science, 1999.
C.J. Merz and P.M. Murphy. UCI repository of machine learning databases,
1998.

J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA, 1993.

L.G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142,
November 1984.

Learning From Positive and Unlabeled Examples 83

A Experimental results

12
C4.5POSUNL(LAB) ——
C4.5POSUNL(D(f)) -
POSC4.5 -

10f R

error rate
o
T

0 L L L L
0 200 400 600 800 1000

size(POS)=size(UNL)

Fig. 3. size(LAB) = 25; size(POS) = size(UNL) ranges from 50 to 1000 by step 50;
D(f) =05

12
"C4.5POSUNL(LAB) ——
C4.5POSUNL(D(f)) —-——
POSCA.5 -

10| R

error rate
o
T

Fig. 4. size(LAB) = 25; size(POS) = size(UNL) = 1000; D(f) ranges from 0 to 1
by step 0.05

84 Fabien Letouzey et al.

50
"C4.5POSUNL(LAB) ——
C4.5POSUNL(D(f)) -
POSC4.5 - |

45 |-
35 | g
30 | i

25 | g

error rate

20 PRI g

100

Fig. 5. size(LAB) = 25; size(POS) = 100; size(UNL) = 1000; D(f) ranges from 0
to 1 by step 0.05

70
"C4.5POSUNL(LAB) ——
G4.5POSUNL(D(f)) -------
. POSC4.5 -
60 E
50 - E
o 40 E
8 :
8 .
® 30t i
20 E
10 | ™ E
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 9 100

D(f)

Fig. 6. size(LAB) = 25; size(POS) = size(UNL) = 1000; D(f) ranges from 0 to 1
by step 0.05; a noise rate of 0.2 is applied

Learning From Positive and Unlabeled Examples

60
C4.5POSUNL(LAB) ——
G4.5POSUNL(D(f)) -------
POSC4.5 -
50 -
40
Q
©
§ 30 |
5
20
10 .
0 1 1 1 1 1 1
0 100 200 300 400 500 600 700

size(POS)=size(UNL)

85

Fig. 7. kr-vs-kp data set; size(LAB) = 25; size(POS) = size(UNL) ranges from 50

to 700 by step 50; D(f) ~ 0.5

50
C4.5POSUNL(LAB) ——
C4.5POSUNL(D(f)) -~
45 POSC4.5 -~ ,
majority rule
C4.5 with 35000 labeled examples -~~~
40 .
35 B
30 B
[}
©
§ 25 =
o R
20 e
15 g
10 | E
5L ,
0 Il Il Il Il
0 2000 4000 6000 8000

10000
size(POS)=size(UNL)

Fig. 8. adult data set; size(LAB) = 25; size(POS) = size(UNL) ranges from 500 to

10000 by step 500; D(f) = 0.75

Learning Erasing Pattern Languages with Queries

Jochen Nessel' and Steffen Lange?

! Universitit Kaiserslautern, Fachbereich Informatik
Postfach 3049, 67653 Kaiserslautern, Germany
nessel@informatik.uni-kl.de
2 Universitét Leipzig, Institut fiir Informatik
Augustusplatz 10-11, 04109 Leipzig, Germany
slange@informatik.uni-leipzig.de

Abstract. A pattern is a finite string of constant and variable symbols.
The non-erasing language generated by a pattern is the set of all strings
of constant symbols that can be obtained by substituting non-empty
strings for variables. In order to build the erasing language generated by
a pattern, it is also admissible to substitute the empty string.

The present paper deals with the problem of learning erasing pattern lan-
guages within Angluin’s model of learning with queries. Moreover, the
learnability of erasing pattern languages with queries is studied when ad-
ditional information is available. The results obtained are compared with
previously known results concerning the case that non-erasing pattern
languages have to be learned.

1 Introduction

A pattern is a finite string of constant and variable symbols (cf. Angluin [1]). The
non-erasing language generated by a pattern is the set of all strings of constant
symbols that can be obtained by substituting non-empty strings for variables. In
order to build the erasing language generated by a pattern, it is also admissible
to substitute the empty string.

Patterns and the languages defined by them have found a lot of attention
within the last two decades. In the formal language theory community, formal
properties of both erasing and non-erasing pattern languages have carefully been
analyzed (cf., e.g., Salomaa [15,16], Jiang et al. [7]). In contrast, in the learning
theory community, mainly the learnability of non-erasing pattern languages has
been studied (cf., e.g., Angluin [I], Marron and Ko [10], Angluin [3], Kearns
and Pitt [8], Lange and Wiehagen [9]). The learning scenarios studied include
Gold’s [5] model of learning in the limit, Valiant’s [20] model of probably approx-
imately correct learning, and Angluin’s [3] model of learning with queries. More-
over, interesting applications of pattern inference algorithms have been outlined.
For example, learning algorithms for non-erasing pattern languages have been
applied in an intelligent text processing system (cf. Nix [14]) and have been used
to solve problems in molecular biology (cf., e.g., Shinohara and Arikawa [18]).

However, there is not so much known concerning the learnability of erasing
pattern languages (cf. Shinohara [17], Mitchell [13]). A lot of interesting and

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 86-100, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

Learning Erasing Pattern Languages with Queries 87

quite easy to formulate problems are still open. The most challenging problem is
the question of whether or not the class of all erasing pattern languages is Gold-
style learnable from only positive data. In contrast, the affirmative answer to
the analogue question for non-erasing pattern languages has already been given
in the pioneering paper Angluin [1]. Thus, one may expect that things become
generally more complicated when dealing with erasing pattern languages.

In the present paper, we study the learnability of erasing pattern languages
in Angluin’s [3] model of learning with queries. In contrast to Gold’s [5] model of
learning in the limit, Angluin’s [3] model deals with ‘one-shot’ learning. Here, a
learning algorithm (henceforth called query learner) receives information about a
target language by asking queries which will truthfully be answered by an oracle.
After asking at most finitely many queries, the learner is required to make up
its mind and to output its one and only hypothesis. If this hypothesis correctly
describes the target language, learning took place.

Furthermore, we address the problem of learning erasing pattern languages
with additional information using queries, a refinement of Angluin’s [3] model
which has its origins in Marron [11]. In this setting, the query learner initially
receives a string that belongs to the target language before starting the pro-
cess of asking queries. As it turns out, this extra information may allow for a
considerable speeding up of learning.

Although, there is a rich reservoir on results concerning the problem of learn-
ing non-erasing pattern languages with queries (cf. e.g., Angluin [3], Lange and
Wiehagen [9], Erlebach et al. [1], Matsumoto and Shinohara [12]), to our knowl-
edge, there is only one paper that addresses the erasing case. In Erlebach et
al. [4], the authors pointed out that erasing one-variable pattern languages can
be learned using polynomially many supersets queries. In the present paper, we
mainly deal with the problem to which extent, if at all, the known results for the
non-erasing case have their analogue when erasing pattern languages have to be
learned. We hope that this and similar studies help to widen our understanding
of the peculiarities of learning erasing pattern languages, in general, which, in
the long term, may produce insights being of relevance to successfully attack
the longstanding problem of whether or not positive examples suffice to learn
erasing pattern languages in Gold’s [5] model.

In former studies (cf., e.g., Angluin [3], Marron [11]), mainly the following
types of queries have been considered:

Membership queries. The input is a string w and the answer is ‘yes’ and ‘no’,
respectively, depending on whether w belongs to the target language L.
Equivalence queries. The input is a language L’. If L = L’, the answer is ‘yes’.

Otherwise, together with the answer ‘no’ a counterexample from the sym-
metrical difference of L and L’ is supplied.
Subset queries. The input is a language L'. If L’ C L, the answer is ‘yes’. Other-
wise, together with the answer ‘no’ a counterexample from L'\ L is supplied.
Superset queries. The input is a language L'. If L C L/, the answer is ‘yes’.
Otherwise, together with the answer ‘no’ a counterexample from L\ L' is
supplied.

88 Jochen Nessel and Steffen Lange

For equivalence, subset, and superset queries, also a restricted form has been
studied. In the corresponding case, the answer “no” is no longer supplemented
by a counterexample.

The following table summarizes the results obtained and compares them to
the corresponding results concerning the learnability of non-erasing pattern lan-
guages with queries. The types of queries are identified according to the follow-
ing scheme: (1) membership queries, (2) equivalence queries, (3) subset queries,
and (4) restricted superset queries. (5) indicates the fact that additional infor-
mation is available. The items in the table have to be interpreted as follows. The
item ‘NO’ indicates that queries of the specified type are insufficient to exactly
learn the corresponding language class. The item ‘YES’ indicates that the corre-
sponding class is learnable using queries of this type. Furthermore, if the add-on
‘PoLy’ appears, it is known that polynomially many queries will do, while, oth-
erwise, it has been shown that polynomially many queries do not suffice. The
table items that are superscripted with a T refer to results from Angluin [3],
while those superscripted with a ¥ refer to recent results from Matsumoto and
Shinohara [12].

Type of Arbitrary patterns Regular patterns
queries non-erasing |erasing non-erasing | erasing
(1) YesT No YesT YES
(4) Yes+Pory'| No [YEes+Pory'|Yes+PoLy
(1) + (5) YesT No |YEs+PoLy*|YEs+PoLy
1)+ (2) + (3) YesT YES YesT YES
(1) + (2) + (3) + (5) YES YEs |YES+Pory*|YEs+PoLy

2 Preliminaries

2.1 Patterns and their languages

In the following, knowledge of standard mathematical and recursion theoretic
notations and concepts is assumed (cf., e.g., Rogers [19]). Furthermore we as-
sume familiarity with basic language theoretic concepts (cf., e.g., Hopcroft and
Ullman [6]). Patterns and pattern languages have been formally introduced in

Angluin [1].
We assume a finite alphabet X such that |X| > 2 and a countable, infinite
set of variables X = {x,y,z,21,y1,21,...}. The elements from X are called

constants. A word is any string — possibly empty — formed by elements from X.
The empty string is denoted by e.

A pattern is any non-empty string over X' U X. The set of all patterns is
denoted by 7. Of course 7T depends on X', but it will always be clear from the
context, which alphabet is being used. Let «, 8 and the like range over pattern.
Two patterns « and (are equal, written o = (3, if they are the same up to
renaming of variables. For instance, xy = yz, whereas zyx # xyy.

Moreover, let o be a pattern that contains k distinctive variables. Then « is
in normal form, if the variables occurring in « are precisely z1, ...,z and for

Learning Erasing Pattern Languages with Queries 89

every j with 1 < j < k, the leftmost occurrence of x; in « is left to the leftmost
occurrence of ;1.

A pattern « is homeomorphically embedded in pattern (3, if o can be ob-
tained by deleting symbols from (. Obviously, it is decidable whether or not «
is homeomorphically embedded in 3.

By wars(a)) we denote the set of variables appearing in pattern «. Let |¢]
stand for the number of symbols in a. By |a|, we denote how many times the
symbol x appears in a.

Let o be a pattern and let |a] = m. Then, for all j € IN with 1 < j < m,
afj] denotes the symbol at position j in pattern a. Moreover, for all j,z € IN
with 1 < j <z < m, we let afj : z] denote the subpattern of o which starts at
position j and ends at position z, i.e., afj : z] = alj] - - a[z].

If, for all z € vars(a), |a|, = 1, the pattern « is said to be a regular pattern
(i.e., every variable in « appears at most once). The set of all regular patterns
is denoted by 7,.. If vars(a) = {x} for some = € X, then « is said to be a
one-variable pattern.

A substitution is a mapping from X to X*. For a pattern «, ao is the word
that results from replacing all variables in o by their image under o. For x € X,
w € X* and « € T, let afx < w] denote the result of replacing x by w in a.

For a pattern «, let seqterm(a) be the sequence of all non-variable parts of a.
For example, seqterm(xabybbzba) = (ab, bb, ba).

For a pattern a, the erasing pattern language L.(c) generated by « is the set
of all strings in X* that one obtains by substituting strings from X* for variables
in a. We let o, denote the word that one obtains if one substitutes the empty
string for all variables in a. Obviously, a. is the one and only shortest string in
the language L.(c).

A pattern is called proper, if it contains at least one variable. It is easy to see
that L.(«) is infinite if and only if « is proper. Therefore, the main objective of
our studies are proper patterns.

For o, 8 € T0, by Lc(a)L.(8) we denote the set of all words uv with v € L¢(«)
and v € L.(f). This notation extends to more than two patterns in the obvious
way.

For a pattern «, the non-erasing pattern language L(a) generated by « is
the set of all strings in X7 that one obtains by substituting strings from X1 for
variables in a. The only difference between erasing and non-erasing languages
is the additional option to substitute variables by the empty string. But this
seemingly small detail makes a big difference. In the erasing case, things become
generally much harder (cf., e.g., Salomaa [15,16], Jiang et al. [7]).

Finally, two patterns o and (are said to be equivalent, written o = [,
provided that L.(«) = Lo(5).

2.2 Models of learning with queries

The learning model studied in the following is called learning with queries. An-
gluin [3] is the first comprehensive study of this learning model. In this model,
the learner has access to an oracle that truthfully answers queries of a specified

90 Jochen Nessel and Steffen Lange

kind. A query learner M is an algorithmic device that, depending on the reply
on the queries previously made, either computes a new query or a hypothesis and
halts. M learns a target language L using a certain type of queries provided that
it eventually halts and that its one and only hypothesis correctly describes L.
Furthermore, M learns a target language class C using a certain type of queries,
if it learns every L € C using queries of the specified type. As a rule, when learn-
ing a target class C, M is not allowed to query languages not belonging to C
(cf. Angluin [3]).

Moreover, we study learning with additional information using queries. In
this setting, a query learner M receives, before starting to ask queries, one string
that belongs to the target language. Then, similarly as above, M learns a target
language L with additional information using a certain type of queries provided
that, no matter which string w € L is initially presented, it eventually halts and
the hypothesis which it outputs correctly describes L. Furthermore, M learns
a target language class C with additional information using a certain type of
queries, if it learns every L € C with additional information using queries of the
specified type. As above, M is not allowed to query languages not belonging to
the target class.

The complexity of a query learner is measured by the total number of queries
to be asked in the worst-case. The relevant parameters are the length of the
minimal description for the target language and, in case learning with addi-
tional information is studied, the length of the minimal description for the target
language and the length of the initial example presented.

Since we deal with the learnability of (non-)erasing pattern languages, it
seems to be appropriate to require that a query learner M uses just patterns to
formulate its queries. It will become clear from the context whether a query «
refers to the non-erasing language L(«) or the erasing language L. (a)). Moreover,
we generally assume that a query learner outputs patterns as hypotheses.

The following lemmata provide a firm basis to derive lower bounds on the
number of queries needed.

Lemma 1. (Angluin [3]) Assume that the target language class C contains at
least n different elements L1, ..., Ly, and there exists a language Ln ¢ C such
that, for any pair of distinct indices i,j, L; N Lj = Ln. Then any query learner
that learns each of the languages L; using equivalence, membership, and subset
queries must make n — 1 queries in the worst case.

Lemma 1 can easily be modified to handle the case that learning with addi-
tional information using queries is considered.

Lemma 2. Assume that the target language class C contains at least n different
elements L1, ..., Ly, and there exists a non-empty language Ln ¢ C such that,
for any pair of distinct indices i,j, Ly N L; = Ln. Then any query learner that
learns each of the languages L; with additional information using equivalence,
membership, and subset queries must make n — 1 queries in the worst case.

PRrROOF. The initial example is simply taken from the non-empty language Ln.

This example gives no real information, since it belongs to all languages L;. The
rest of the proof can literally be done as in Angluin [3]. g

Learning Erasing Pattern Languages with Queries 91

3 Results

3.1 Learning of erasing pattern languages

Proposition 1 summarizes some first results that can easily be achieved.
Proposition 1.

(a) The class of all erasing pattern languages is not learnable using membership
queries.

(b) The class of all erasing pattern languages is learnable using restricted equiv-
alence queries.

(c¢) The class of all erasing pattern languages is not polynomially learnable using
membership, equivalence, and subset queries.

PROOF. Assertion (b) is rather trivial, since the class of all erasing pattern
languages constitutes an indexable class of recursive languages.

Assertion (c) follows directly from Lemma 1. To see this note that, for all
n € IN, there are |X|™ many distinctive patterns of form zw, where w € X+
with |w| = n. Moreover, since, for all w,w" € X, jw| = [u'| and w # w’ imply
Le(zw) N Le(zw') = (), we are immediately done.

It remains to verify Assertion (a). So, let o = ayy. Moreover, for all i € IN,
let o; = az?*lyy. Assume to the contrary that there is a query learner M
that learns all erasing pattern languages using membership queries. Let W =
{w1,...,w,} be the set of strings that M queries when learning «. Let m =
maz({|w;| | w; € W}). It is easy to see that, for all w € X* with |w| < m,
w € Le(a) iff w € L. (ayy,). However, Lo(au,) # Le(a), and thus M cannot learn
a and am, a contradiction. [x)

As our next result shows, Assertion (c) remains valid if additional information
is available. Note that, in contrast to all other results presented above and below,
Theorem 1 comprises the non-erasing case, too.

Let n € IN, let 7T™ be the class of all patterns having length n, and let

L (™) ={Le(a) | v € T"} as well as L(TT") = {L(e) |« € TT"}.
Theorem 1. The class of all erasing pattern languages in L.(TT™) and of all non-
erasing pattern languages in L(TT™), respectively, is not polynomially learnable
with additional information using membership, equivalence, and subset queries,
even in case that n is a priori known.

PROOF. Due to the limitations of space, we only handle the erasing case. For
the sake of simplicity, assume that n is even. So, let n = 2m and let 7T* C 7T"
be the set of all patterns a that fulfill Conditions (1) to (3), where

(1) a=zX1aX2a - Xpna, where v € X, Xy € {z}*, ..., and X,,, € {a}*.
(2) |aly =m.
(3) laly = m.
The main ingredient of the proof is the following claim.
Claim. For all a, 3 € T, if a # 3, then Lo(a) N Lo(B) = {a'™ | t > 1}.
Let « and 3 be given. Clearly, {a'™ | t > 1} C L.(a) N L.(3) follows directly
from Conditions (2) and (3). Therefore, it remains to verify that L.(a)NL.(8) C

92 Jochen Nessel and Steffen Lange

{a'™ | t > 1}. So, let w € L.(a) and let w ¢ {a'™ | t > 1}. By Conditions (2)
and (3), there has to be some ¢ with zo & {a}* such that ao = w. Suppose to
the contrary that w € L.(3). Hence there is some ¢’ with xo’ & {a}* such that
w = Bo’.

By Conditions (2) and (3), we know that |xo’| = |zo|. Moreover, since o
and (3 both start with x, we may conclude that zo’ = xo. Now, choose the least
index 7 such that X; # Y;. Note that ¢ exists, since a # (3. Moreover, note that
i # n, since |a|] = |F] and i was chosen to be the least index with X; # Y;. By
the choice of i, we obtain (zX;aXs - X;_1a)0 = (Y1aY2---Y;_1a)0’.

Finally, pick the first position r in xo that is different from a. Note that such
a position exists, since xo ¢ {a}*. Let b be the r*" letter in xo. Without loss of
generality we assume that |X;| < |Y;|. (Otherwise « is replaced by § and vice
versa.) Let |X;| = k and |Y;| = ¢. Hence (X;a)o = (z0)*a and Yo = (z0)’ =
(zo)*zo(zo)*~F~1. Since i # n, X; cannot form the end of . But then ao and
Bo must differ at position z + k|xo| + r, where z = |z X1aX2 -+ X;_1a0|. Hence
ao # [3o’, a contradiction. This completes the proof of the claim.

By the latter claim, we may conclude that, for all o, 5 € T, a # (3 implies
L.(a) # L(B). To see this, note that, for all a € T, L.(a) \ {a}T # 0.
Moreover, one easily verifies that {a!™ |t > 1} ¢ 7T,

In order to apply Lemma 2, we have to estimate the number of patterns
that belong to 7T7'. For m > 1, there are (2;’:__12) possibilities to distribute the
remaining m — 1 occurrences of x over the (possibly empty) strings X1 to X,,.
An easy and very rough calculation shows that, for all m > 4, (2:77:12) > 2™,

Hence, by Lemma 2, we may conclude that that any query learner that
identifies 777" with additional information must make at least 2 —1 membership,
equivalence or subset queries. Finally, since, by assumption, m = 2n, and 7T* C
", we are done. [x)

By Lemma 2, Theorem 1 allows for the following corollary.

Corollary 2. The class of all erasing pattern languages is not polynomially
learnable with additional information using membership, equivalence, and subset
queries.

In contrast to the non-erasing case (cf. Angluin [3]), restricted superset
queries do not suffice the learn all erasing pattern languages. Recall that, for non-
erasing pattern languages, even polynomially many restricted superset queries
are enough. Surprisingly, the announced non-learnability result for erasing pat-
tern languages remains valid, if additional information is provided.

Theorem 3. The class of all erasing one-variable pattern languages is not learn-
able with additional information using restricted superset queries.

PROOF. For all j > 1, we let a;j = 27a. Now, assume to the contrary that there
exists a query learner M that finitely learns all one-variable pattern languages
with additional information using restricted superset queries. Moreover, assume
that M is allowed to use arbitrary erasing pattern languages as input to its
restricted superset queries.

Learning Erasing Pattern Languages with Queries 93

First, provide the string w’ = a to the learner. Note that w’ belongs to all
erasing pattern languages L. (o). The queries of the learner will be answered as
follows:

Let 3 be the pattern queried by M. Depending on the minimal string §. in
L.(B), we distinguish the following cases:

Case 1. B = a.

Now, there are 3, 3" € X* such that 3 = §'af”. If vars(8’) \ vars(8") # 0,
the reply is ‘yes’; otherwise the reply is ‘no’.

Case 2. B = €.

If there is some x € vars(f) with |3|, = 1, then the reply is ‘yes’. Otherwise,
the reply is ‘no’.

Case 3. Otherwise.

Then, the reply is ‘no’.

Let m be the pattern which M outputs as its final hypothesis.

We claim that there is a pattern «; such that (i) L.(o;) # Le(m) and (ii)
the reply to all the queries posed by M is correct, and therefore M must fail to
learn L. ().

The formal verification is as follows.

First, let 3 be a pattern for which the reply received was ‘no’. Now, it is not
hard to see that, for all «;, this reply is correct, i.e., Lo(a;) € L.(8). (* In each
case, either a or b/a witnesses L.(a;) \ Le(8;.) # 0. %)

Second, let 8 be a pattern for which, in accordance with Case 2, the reply
received was ‘yes’. Clearly, L.(8) = L.(z), and thus, for all a;, L.(a;) C Lc(5).

Third, let B, , ..., Bk, be the patterns for which, in accordance with Case 1,
the reply received was ‘yes’. Hence, there are patterns ﬂ]’cl,...,ﬂ,’cm € X" and
Biys---» 0By € X" such that, for all 2 < m, 8;. = 3 af] . For every z < m,
let x, be the variable in vars(3;,) \ vars(8},) for which |3} [,. is maximal.

Finally, set j = (|| + 1) -][.<,, 8}, |2.. Obviously, L.(a;) # Le(m), since
L.(m) contains a string having the same length as 7, while L.(a;) does not.
It remains to show that, for all z < m, L.(coj) € Lo(Bk,). So, let w € L.(a;)
and let z < m. Hence, there is some v € X* such that v/a = w. By the choice
of j, there is some r € IN such that r = W Now, select the substitution o

that assigns the string v” to the variable z. and the empty string e to all other
variables. Since [3)_|.. - = j, we get 3;.0 = w, and thus w € L.(B.). This
completes the proof of the theorem. [z

Having a closer look at the demonstration of Theorem 3, we may immediately
conclude:

Corollary 4. The class of all erasing pattern languages is not learnable with
additional information using restricted superset queries.

3.2 Learning regular erasing pattern languages

As we have seen, in the general case, it is much more complicated to learn erasing
pattern languages instead of non-erasing ones. Surprisingly, the observed differ-

94 Jochen Nessel and Steffen Lange

ences vanish when regular erasing and regular non-erasing pattern languages
constitute the subject of learning.

Proposition 2. The class of all reqular erasing pattern languages is not poly-
nomially learnable using equivalence, membership and subset queries.

PRrROOF. The proposition follows via Lemma 1. To see this, note that all pattern
languages used in the demonstration of Proposition 1, Assertion (c) constitute
regular erasing pattern languages. [y

As we will see, even polynomially many membership queries suffice to learn
regular erasing pattern languages, if additional information is available. Hence,
the corresponding result from Matsumoto and Shinohara [12] for regular non-
erasing pattern languages translates in our setting of learning regular erasing
pattern languages.

In order to prove Theorem 5, we define a procedure called sshrink (see Fig-
ure 1 below) that can be used to determine the shortest string in a target regular
erasing pattern language L.(«). The input to the procedure sshrink is any string
from L. («). Moreover, sshrink requires access to a membership oracle for the tar-
get language L.(«). Note that sshrink is a modification of the procedure shrink
in Matsumoto and Shinohara [12]. Moreover, sshrink is an abbreviation for the
term ‘solid shrink’.

In the formal definition of sshrink we make use of the following notation. Let
w € YT with |w| = m. For all j € IN with 1 < j < m, w[j < €] is the string
which one obtains, if one erases w[j], i.e., the constant at position j in w.

On input w € L.(«), execute Instruction (A):

(A) Fix m = |w| and goto (B).

(B) For j =1,...,m, ask the membership query w[j < &]. If the
answer is always ‘no’, then output w. Otherwise, determine
the least j, say j, for which the answer is ‘yes’ and goto (C).

(C) Set w = wl[j < €] and goto (A).

Figure 1: Procedure sshrink

The following lemma is quite helpful when verifying the correctness of the
procedure sshrink (cf. Lemma 4 below).

Lemma 3. Let a« € T, and w € L.(a). Then w = a. iff v € Le(a) for all
proper subwords of w.

PRrOOF. Necessity: Obviously, since . is the shortest string in L. («).

Sufficiency: Now, let w € L.(«). Hence, there is a substitution o such that
aoc = w. Suppose that there is a variable z in « such that o(z) # e. Now, modify
o to ¢’ by assigning the empty string ¢ to z. Since « is a regular pattern, we
know that «o’ forms a subword of w. By definition, ac’ € L.(«). Therefore, if
no proper subword of w belongs to L.(«), w must equal . X

Learning Erasing Pattern Languages with Queries 95

Lemma 4. Let a« € T, and w € L.(a). On input w, sshrink outputs the
string ae. Moreover, sshrink asks O(|w|?) membership queries.

PRrROOF. The lemma follows immediately from Lemma 3 and the definition of
the procedure sshrink (cf. Figure 1). g

Theorem 5. The class of all reqular erasing pattern languages is polynomially
learnable with additional information using membership queries.

PROOF. The proof is relatively easy for the case that |X| > 3. It becomes pretty
hard if the underlying alphabet exactly contains two constant symbols, even
though the underlying idea is the same. The main reason is, that the following
fundamental lemma holds only in case that | 2| > 3.

Lemma 5. (Jiang et al. [7]) Let o, 8 € T0 and |X| > 3. If L.(a) = Lo(5), then
seqterm(a) = seqterm(().

To see the point, assume for a moment that ¥ = {a,b}. As some quick
calculation shows, L.(zabyaz) = L.(zaybaz), but obviously seqterm(zabyaz) #
seqterm(xaybaz).

To proof the theorem, we start with the case of |X| > 3. Let « € 7T, and
w € L.(a) be given. Remember that sshrink uses O(Jw|?) membership queries
for a given w. Let a. = a1 ---a, be the word returned by sshrink. For all i
with 1 < ¢ < n — 1, there is a constant ¢ € X' such that ¢ # a; and ¢ # a;41.
Now, Lemma 5 and the regularity of « imply a; ---a;ca;jt1---an € Le(a) iff,
in pattern «, there is a variable between a; and a;4+;. Hence, n + 1 additional
membership queries suffices to find the positions at which variables appear in
«, and therefore we can easily construct a pattern that defines the same erasing
language as a.

Next, let |X| = 2. Now, the main obstacle is that there is no longer a “third
letter”, and therefore, as the above example shows, Lemma 5 remains no longer
valid. However, we have been able to derive a couple of lemmata that allows us
to show that there is kind of “normal form” to represent regular erasing pattern
languages. Applying this insight, the theorem can be shown. The interested
reader is referred to the appendix, where a short sketch of the proof can be
found.

In case that there is no additional information available, membership queries
suffice to learn the class of all regular erasing pattern languages, contrasting the
general case (cf. Proposition 1, Assertion (a)). However, Proposition 2 directly
implies that membership queries cannot be used to find one element from the
target regular erasing pattern languages sufficiently fast.

Corollary 6. The class of all reqular erasing pattern languages is learnable
using membership queries.

Again, in contrast to the general case (cf. Proposition 1, Assertion (c)), re-
stricted superset queries suffice to learn regular erasing pattern languages fast.

One main ingredient of the proof of Theorem 7 is the following lemma which
shows that polynomially many restricted superset queries can be used to find
the shortest string in an unknown regular erasing pattern language.

96 Jochen Nessel and Steffen Lange

Note that, in general, superset queries are undecidable for erasing pattern
languages (cf. Jiang et al. [7]). However, since every regular erasing pattern
language constitutes a regular language, the query learners used in the demon-
stration of Lemma 6 and Theorem 7 exclusively ask decidable restricted super-
set queries. Note that, for regular languages, the superset relation is decidable
(cf., e.g, Hopcroft and Ullman [6]).

Lemma 6. Let |X| > 2. For all « € T, it is possible to find ce with polynomially
many restricted superset queries.

PRrOOF. We briefly sketch the underlying idea, only. So, let @ be the unknown
pattern.

For all constants a € X and all n = 1,2,..., one asks restricted superset
queries of the form zyaxsa - - - ax,41, until the reply is ‘no’ for the first time. As
a result, the first ‘yes’ allows one to determine how often the constant a appears
in ag, i.e., the constant a occurs exactly n times.

Once the multiplicity of each constant is known, one simply selects the con-
stant with the largest one. Now, let a have multiplicity n. Moreover, let by, ..., bx
be the list of (possibly equivalent) constants different from a that must oc-
curs in a. Now, one asks restricted superset queries for z1b1x20a23 - - - Thaxp 11,
r1022b1T3 - - - THRaT,+1, and so on, until ‘yes’ is returned for the first time. This
gives the leftmost occurrence of by with respect to the a’s. By iterating this
procedure for by to by, all respective positions of the constants in « can be de-
termined. Clearly, at the very end, this gives a.. It is not hard to see that at
most O(|a|?) restricted superset queries are sufficient to determine a.. g

Theorem 7. The class of all reqular erasing pattern languages is polynomially
learnable using restricted superset queries.

PROOF. First, consider the case of |X| > 3. Let a be the unknown pattern and
let ae = ay---a,. Without loss of generality we may assume that o does not
contain variables at consecutive positions.

Initially, query ajyx;. If the answer is yes, set 3 = a1; else set 8 = x1a;. Set
j = 2 and execute Instruction (A).

(A) For alli=j,...,n, query Ba, - - - a;x; until the answer is ‘no’. If the answer
is always ‘yes’, goto (B). Otherwise, goto (C).

(B) Query Baj - - - ay,. If the answer is ‘yes’, output 8 = fa, - - - a,,. Otherwise set
B = Baj---anx;.

(C) Let k be the least index such that reply is ‘no’. Set 8 = fa; - --ax—12;ax
and j = k + 1 and goto (A).

Obviously, the whole process requires |a.| + 2 queries. Moreover, one easily
verifies that 8. = a.. As above, note that all queries asked are indeed uniformly
recursive, since they only require to compute the homeomorphic embedding re-
lation.

It remains to show that L.(8) = L.(«).

In the remainder of this proof, we assume that « and § are in normal form.
Hence, either the patterns are variable-free or there are r,7’ € IN such that

Learning Erasing Pattern Languages with Queries 97

vars(a) = {x1,...,2.} and vars(8) = {x1,...,2}. We claim that 8 = a.
Suppose the contrary and let p be the least position with 3[p] # «[p].

Case 1. p=1.

Obviously, if B[1] = 1, then L.(a1x) 2 L.(a), and therefore a[l] = 1,
a contradiction. Otherwise, let 5[1] = a;. But then, by construction, «[1] = aq,
again a contradiction.

Case 2. p > 1.

By assumption, 8[1 : p—1] = o[l : p—1]. Clearly, if 8 and « have a letter at
position p, then B[p] = alp] because of B = a.. Hence, it suffices to distinguish
the following subcases.

Subcase 2.1. afp] = x; for some j <r.

Clearly, if a[1 : p — 1] = a1 ---ap—1, then we are directly done. To see this
note that every o with z;0 # a, defines a word w = ao with w € L.(a)\ Ls(5),
a contradiction. Next, suppose that «[l : p — 1] contains at least one variable.
By the choice of «, we know that a[p — 1] ¢ X. Now, select a substitution o
that meets z;0 = ¢, where ¢ € X, ¢ # (3[p — 1], and ¢ # G[p]. Since |X| > 3 such
a constant must exist. Moreover, for all x € X' \ {z,}, set o(z) = . Now, one
easily verifies that ao € L.(a) \ Le(5).

Subcase 2.2. B[p] = x; for some j <r'.

If afl : p]| = a1---ap_1ap, we are directly done. To see this, note that
L.(ai---ap—1apx) O Lc(a), and therefore, by construction, B[p] = ap, a con-
tradiction. Next, consider the case that o[l : p — 1] contains at least one vari-
able. Let a, = afp]. Hence, by construction, L.(8[1 : p — 1]z) 2 L.(«) and
L (B[1l:p—1la,x) 2 L:(a), where x is a variable not occurring in S[1: p — 1].
Let w € L.(«). Then, by definition, there is some substitution o such that
w=a[l: p—1]oa,alp+1: mlo, where m = |a|. Since B[1 : p—1]) = o[l : p—1],
this directly implies w € L.(8[1 : p — 1]a.x), a contradiction.

Subcase 2.3. Blp] = €.

Hence, |a| > |8]. Let |8] = m. Since ae = (3, we know that a[m+1] = 2. 41.
Next, by the choice of «, we get a[m] ¢ X, and therefore 3[m] = a,,. However,
this contradicts L.(8) 2 L. («).

Subase 2.4. alp] = ¢.

Hence, |8| > |a|. Now, let |a| = m. First, let a[m] = x,. Since a. = [, this
yields Blm+ 1] = x,41. Because of S[m] = a[m], 8 must contain two consecutive
variables which violates the construction of 3. Second, let a[m] = a,. Again,
since a = f, we obtain S[m + 1] = x,41. But clearly, L.(a) 2 L.(«), and
since, B[1 : m] = a, we obtain, by construction, § = «, a contradiction.

Clearly, there are no other cases to consider, and therefore o = .

Finally, we discuss the case of |X| = 2. The underlying idea is as follows.
The required query learner simulates the query learner from the demonstra-
tion of Theorem 5 (see also the appendix). As one can show, the membership
query posed by the latter learner can equivalently replaced by restricted superset
query. Note that this approach works only in case that, regular erasing pattern
languages have to be learned. X

98 Jochen Nessel and Steffen Lange

4 Conclusion

In the present paper, we studied the learnability of erasing pattern languages
within Angluin’s [3] model of learning with queries. We mainly focused our
attention on the following problem: Which of the known results for non-erasing
pattern languages have their analogue when erasing pattern languages have to
be learned and which of them have not? As it turns out, concerning regular
pattern languages, there are no difference at all, while, in the general case, serious
differences have been observed.

References

1. Angluin, D. (1980), Finding pattern common to a set of strings, Journal of Computer
and System Sciences 21, 46—62. 86, 87, 88

2. Angluin, D. (1980), Inductive inference of formal languages from positive data,
Information and Control 45, 117-135.

3. Angluin, D. (1988), Queries and concept learning, Machine Learning 2, 319-342.
86, 87, 88, 89, 90, 92, 98

4. Erlebach, T., Rossmanith, P., Stadtherr, H., Steger, A., Zeugmann, T. (1997), Learn-
ing one-variable pattern languages very efficiently on average, in parallel, and by ask-
ing questions, In: Proc. Int. Conference on Algorithmic Learning Theory (ALT’97),
Lecture Notes in Artificial Intelligence 1316, pages 260-276, Springer-Verlag. 87

5. Gold, M. (1967), Language identification in the limit, Information and Control 10,
447-474. 86, 87

6. Hopcroft, J. E., Ullman J. D. (1979), Introduction to Automata Theory, Languages,
and Computation, Addison-Wesley Publishing Company. 88, 96

7. Jiang, T., Salomaa, A., Salomaa, K., Yu, S. (1995), Decision problems for patterns,
Journal of Computer and System Sciences 50, 53-63. 86, 89, 95, 96

8. Kearns, M., Pitt, L. (1989), A polynomial-time algorithm for learning k-variable
pattern languages from examples, In: Proc. Workshop on Computational Learning
Theory (COLT’89), pages 5771, Morgan Kaufmann Publ. 86

9. Lange, S., Wiehagen, R. (1991), Polynomial-time inference of arbitrary pattern lan-
guages, New Generation Computing 8, 361-370. 86, 87

10. Marron, A., Ko, K. (1987), Identification of pattern languages from examples and
queries, Information and Computation 74, 91-112. 86

11. Marron, A. (1988), Learning pattern languages from a single initial example and
from queries, In: Proc. Workshop on Computational Learning Theory (COLT’88),
pages 1-23, Morgan Kaufmann Publ. 87

12. Matsumoto, S., Shinohara, A. (1997), Learning pattern languages using queries,
In: Proc. European Conference on Computational Learning Theory (EuroCOLT’97),
Lecture Notes in Artificial Intelligence 1208, pages 185—-197, Springer Verlag. 87,
88, 94

13. Mitchell, A. (1998), Learnability of a subclass of extended pattern languages, In:
Proc. ACM Workshop on Computational Learning Theory (COLT’98), pages 6471,
ACM-Press. 86

14. Nix, R. P. (1983), Editing by examples, PhD Thesis, Technical Report 280, Yale
University, Dept. Computer Science. 86

15. Salomaa, A. (1994), Patterns (the formal language theory column), EATCS Bul-
letin 54, 46-62. 86, 89

Learning Erasing Pattern Languages with Queries 99

16. Salomaa, A. (1994), Return to patterns (the formal language theory column),
EATCS Bulletin 55, 144-157. 86, 89

17. Shinohara, T. (1983), Polynomial-time inference of extended regular pattern lan-
guages, In: Proc. RIMS Symposia on Software Science and Engineering, Lecture
Notes in Computer Science 147, pages 115-127, Springer-Verlag. 86

18. Shinohara, T., Arikawa, S. (1995), Pattern inference, In: Algorithmic Learning for
Knowledge-Based Systems, Lecture Notes in Artificial Intelligence 961, pages 259—
291, Springer-Verlag. 86

19. Rogers, H. Jr. (1987), Theory of Recursive Functions and Effective Computability,
MIT Press. 88

20. Valiant, L. G. (1984), A theory of the learnable, Communications of the ACM 27,
1134-1142. 86

A Appendix

Next, we provide some more details concerning the problem of how to prove The-
orem 5 in case that the underlying alphabet X' contains exactly two constants.

Theorem. Let |X| = 2. The class of all regular erasing pattern languages
over X is polynomial learnable with additional information using membership
queries.

PROOF. Because of the lack of space, we only sketch the general idea, thereby
skipping most of the details.

Suppose that X = {a,b}. Let « € T, and w € L.(«) be given. Apply-
ing the procedure sshrink, O(|w|?) membership queries suffices to determine a.
(cf. Lemma 4, for the relevant details).

Hence, we may assume that a. = a; - --a, is given, too. Now, based on a.,
the variables in « can be determined as follows.

First, if a; = a;41, it can easily be determined whether or not there is a
variable between a; and a;y;. For that purpose, it suffice to ask of whether or
not aj -+ - a;—1a;ba;11 -+ - an € L(a), where b # a;. Second, by asking of whether
or not ba. € L.(a) (aeb € Lo()), it can be determined whether or not o begins
(ends) with a variable, again assuming b # a1 (b # ay).

Let o be the resulting pattern. If o contains only a’s, for instance, we are
already done. Otherwise, a,. contains a’s and b’s. Now, one has to determine of
whether or not there are variables in o at the changes of form ‘ad’ and ‘ba’.

There are a lot of cases to distinguish. In order to construct a pattern § with
L.(B) = L:(a), the following procedure has to be implemented.

(0) All changes ‘ab’ and ‘ba’ in o/ are marked ‘needs attention’.

(1) If there is a change of form ‘ab’ and ‘ba’, respectively, that needs attention,
then pick one and goto (2). Otherwise, set 8 = o’ and return §.

(2) Determine to which of the relevant cases the change fixed in (2) belongs.
Ask the corresponding queries and replace the change fixed in o/ by the
corresponding subpattern.

(3) Mark the selected/corresponding change as ‘attended’.

(4) Goto (1).

The missing details are specified in a way such that Conditions (i) to (iii) are
fulfilled, where

100 Jochen Nessel and Steffen Lange

(i) In none of the relevant cases, a new change of form ‘ab’ and ‘ba’, respectively,
is introduced.

(ii) In each of the relevant cases, at most three membership queries are necessary
to determine the subpattern which hast to be substituted.

(iii) In each of the relevant cases, the subpattern which is substituted is equiv-
alent to the corresponding subpattern in the unknown pattern a.

Obviously, (i) guarantees that this procedure terminates. By (ii), we know
that O(]a’|) additional membership queries will do. Moreover, combing (iii) with
Lemma 7 below, one may easily conclude that L.(8) = L.(«).

It remains to specify the relevant cases.

As a prototypical example, we discuss the following simple cases in detail.

Subsequently, let 0. be the substitution that assigns the empty word ¢ to all
variables in X.

Case 1. o/ = ajaabbay, where the change of form ‘ab’ is marked.

Ask whether or not ajaababbaso. € L.(«). If the answer is ‘no’, no variable
appears in the target pattern at this change of form ‘ab’. If the answer is ‘yes’,
replace aabb by aaxbb. It is not hard to see that Condition (iii) is fulfilled.

Case 2. o = ajzab’yas, where the change of form ‘ab’ is marked.

Now, there is no need to ask any membership query at all. By Lemma 8 below,
we know that a new variable between a and b does not change the erasing pattern
language generated by the corresponding pattern.

Due to the space constraints, further details concerning the remaining cases
are omitted. [y

Lemma 7. Let oy, ..., € T, and let « = aq, ..., an. Moreover, let § € T,
such that Lo(cy) = Lo(B) and, for all j # i, vars(aj) Nwars(3) = 0. Then,
Ls(a) = Le(al) to Ls(aifl)Ls(ﬁ)Ls(aifl) to Le(an)-

PROOF. Since « is regular, we have vars(o;) Nwvars(a;) = 0 for all j with j # i.
This gives Le(a) = Le(a1)Le(a2) - - - Le(an). The remainder is obvious. [y

Lemma 8. Let j € IN. Moreover, let a; = z1ablzo and B; = yray2b’ys. Then,
Le(o) = Le(8;)-
PROOF. Let j € IN be given. Obviously, L.(a;) C L.(3;). It remains to show
that Ls(ﬂ]) Q LE(Oéj).

Let o be any substitution. We distinguish the following cases.

Case 1. yao € {a}*.

Hence, yo0 = a’ for some i € IN. Define o’ by setting 210’ = y0a’ and z90" =
yso. Clearly, we get ajo’ = yroatablyso = yioaa'btiyso = Bjo.

Case 2. ya0 € {b}T.

Hence, y20 = b' for some i € IN. Define o’ by setting 10’ = y10 and z0’ =
blyso. Obviously, we get ajo’ = yioabibiyso = y1oab'byso = Bjo.

Case 3. Otherwise.

Hence, yo0 = wab® for some i € IN and some w € X*. Define o’ by set-
ting r10' = y10aw and 20’ = blyso. Obviously, we get ajo’ = y1oawab’blyso =
y1oawab'byso = Bjo. X

Learning Recursive Concepts with Anomalies

Gunter Grieser!, Steffen Lange?, and Thomas Zeugmann®

! Technische Universitat Darmstadt, Fachbereich Informatik, Alexanderstr. 10

64283 Darmstadt, Germany, e-mail: grieser@informatik.tu-darmstadt.de

2 Universitat Leipzig, Institut fiir Informatik, Augustusplatz 10-11
04109 Leipzig, Germany, e-mail: slange@informatik.uni-leipzig.de

3 Medizinische Universitat Liibeck, Institut fiir Theoretische Informatik, Wallstr. 40
23560 Lubeck, Germany, e-mail: thomas@tcs.mu-luebeck.de

Abstract. This paper provides a systematic study of inductive inference
of indexable concept classes in learning scenarios in which the learner is
successful if its final hypothesis describes a finite variant of the target
concept — henceforth called learning with anomalies. As usual, we distin-
guish between learning from only positive data and learning from positive
and negative data.

We investigate the following learning models: finite identification, conser-
vative inference, set-driven learning, and behaviorally correct learning.
In general, we focus our attention on the case that the number of allowed
anomalies is finite but not a priori bounded. However, we also present
a few sample results that affect the special case of learning with an «
priori bounded number of anomalies. We provide characterizations of
the corresponding models of learning with anomalies in terms of finite
tell-tale sets. The varieties in the degree of recursiveness of the relevant
tell-tale sets observed are already sufficient to quantify the differences in
the corresponding models of learning with anomalies.

In addition, we study variants of incremental learning and derive a com-
plete picture concerning the relation of all models of learning with and
without anomalies mentioned above.

1 Introduction

Induction constitutes an important feature of learning. The corresponding theory
is called inductive inference. Inductive inference may be characterized as the
study of systems that map evidence on a target concept into hypotheses about it.
The investigation of scenarios in which the sequence of hypotheses stabilizes to an
accurate and finite description of the target concept is of some particular interest.
The precise definitions of the notions evidence, stabilization, and accuracy go
back to Gold [10] who introduced the model of learning in the limit.

The present paper deals with inductive inference of indexable classes of re-
cursive concepts (indexable classes, for short). A concept class is said to be an
indexable class if it possesses an effective enumeration with uniformly decid-
able membership. Angluin [2] started the systematic study of learning indexable
concept classes. [2] and succeeding publications (cf., e.g., [20], for an overview)

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 101-115, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

102 Gunter Grieser et al.

found a lot of interest, since most natural concept classes form indexable classes.
For example, the class of all context sensitive, context free, regular, and pattern
languages as well as the set of all boolean formulas expressible as monomial,
k-CNF, k-DNF, and k-decision list constitute indexable classes.

As usual, we distinguish learning from positive data and learning from posi-
tive and negative data, synonymously called learning from text and informant,
respectively. A text for a target concept ¢ is an infinite sequence of elements of ¢
such that every element from ¢ eventually appears. Alternatively, an informant
is an infinite sequence of elements exhausting the underlying learning domain
that are classified with respect to their membership to the target concept.

An algorithmic learner takes as input larger and larger initial segments of
a text (an informant) and outputs, from time to time, a hypothesis about the
target concept. The set of all admissible hypotheses is called hypothesis space.
When learning of indexable classes is considered, it is natural to require that
the hypothesis space is an effective enumeration of a (possibly larger) indexable
concept class. This assumption underlies almost all studies (cf., e.g., [2,20]).

Gold’s [10] original model requires the sequence of hypotheses to converge to
a hypothesis correctly describing the target concept. However, from a viewpoint
of potential applications, it suffices in most cases that the final hypothesis ap-
proximates the target concept sufficiently well. Blum and Blum [5] introduced
a quite natural refinement of Gold’s model that captures this aspect. In their
setting of learning recursive functions with anomalies, it is admissible that the
learner’s final hypothesis may differ from the target function at finitely many
data points. Case and Lynes [6] adapted this model to language learning.

Learning with anomalies has been studied intensively in the context of learn-
ing recursive functions and recursively enumerable languages (cf., e.g., [11]). Pre-
liminary results concerning the learnability of indexable classes with anomalies
can be found in Tabe and Zeugmann [17]. Note that Baliga et al. [3] studied the
learnability of indexable classes with anomalies, too. However, unlike all other
work on learning indexable classes, [3] allows the use of arbitrary hypothesis
spaces (including those not having a decidable membership problem). There-
fore, the results from [3] do not directly translate into our setting.

The present paper provides a systematic study of learning indexable concept
classes with anomalies. We investigate the following variants of Gold-style con-
cept learning: finite identification, conservative inference, set-driven inference,
behaviorally correct learning, and incremental learning. We relate the resulting
models of learning with anomalies to one another as well as to the corresponding
versions of learning without anomalies. In general, we focus our attention to the
case that the number of allowed anomalies is finite but not a prior:i bounded.
However, we also present a few sample results that affect the special case that
the number of allowed anomalies is a priori bounded.

Next, we mention some prototypical results. In the setting of learning with
anomalies, the learning power of set-driven learners, conservative learners, and
unconstrained IIMs does coincide. In contrast, when anomaly-free learning is
considered, conservative learners and set-driven learners are strictly less power-

Learning Recursive Concepts with Anomalies 103

ful. Moreover, a further difference to learning without anomalies is established
by showing that behaviorally correct learning with anomalies is strictly more
powerful than learning in the limit with anomalies. Furthermore, in case the
number of allowed anomalies is finite but not a priori bounded, it is proved that
there is no need to use arbitrary hypothesis spaces in order to design superior
behaviorally correct learners, thus refining the corresponding results from [3].
However, if the number of anomalies is a priori bounded, it is advantageous
to use arbitrary hypothesis spaces. In order to establish these results, we pro-
vide characterizations of the corresponding models of learning with anomalies
in terms of finite tell-tale sets (cf. [2]). As it turns out, the observed varieties in
the degree of recursiveness of the relevant tell-tale sets are already sufficient to
quantify the differences in the corresponding models of learning with anomalies.

Moreover, we derive a complete picture concerning the relation of the different
models of incremental learning with and without anomalies.

2 Preliminaries

2.1 Basic notions

Let IN = {0,1,2,...} be the set of all natural numbers. By (.,.}: IN x IN — IN we
denote Cantor’s pairing function. Let A and B be sets. As usual, AAB denotes
the symmetrical difference of 4 and B, i.e., AAB = (A\ B)U(B\ 4). We write
A # B to indicate that AAB # 0. For all a € IN, A =* B iff card(AAB) < a,
while 4 =* B iff card(AAB) < co. We let o o 1 denote the concatenation of two
possibly infinite sequences o and .

Any recursively enumerable set X is called a learning domain. By p(X) we
denote the power set of X. Let C C p(X) and let ¢ € C. We refer to C and ¢
as to a concept class and a concept, respectively. Sometimes, we will identify
a concept ¢ with its characteristic function, i.e., we let ¢(2) = +, if # € ¢, and
¢(z) = —, otherwise. What is actually meant will become clear from the context.

We deal with the learnability of indexable concept classes with uniformly
decidable membership defined as follows (cf. [2]). A class of non-empty concepts C
is said to be an indezable concept class with uniformly decidable membership if
there are an effective enumeration (¢;); e of all and only the concepts in C and a
recursive function f such that, for all j € IN and all z € &, it holds f(j,2) = +,
if 2 € ¢;, and f(j,2) = —, otherwise. We refer to indexable concept classes with
uniformly decidable membership as to indezable classes, for short, and let ZC
denote the collection of all indexable classes.

2.2 Gold-style concept learning

Let X be the underlying learning domain, let ¢ C X be a concept, and let ¢ =
(#n)new be an infinite sequence of elements from ¢ such that {z, | n € N} = ¢.
Then, % is said to be a teat for ¢. By Text(c) we denote the set of all texts for c.
Let ¢ be a text and let y be a number. Then, £, denotes the initial segment of ¢
of length y + 1. Furthermore, we set content(ty) = {z, | n < y}.

104 Gunter Grieser et al.

Let C be an indexable class. Then, we let Tezt(C) be the collection of all
texts in (J o Text(c).

As in [10], we define an inductive inference machine (abbr. IIM) to be an
algorithmic mapping from initial segments of texts to IN U {?}. Thus, an IIM
either outputs a hypothesis, i.e., a number encoding a certain computer program,
or it outputs “?.” a special symbol representing the case the machine outputs
“no conjecture.” Note that an IIM, when learning some target class C, is required
to produce an output when processing any admissible information sequence, i.e.,
any initial segment of any text in Texzt(C).

The numbers output by an IIM are interpreted with respect to a suitably
chosen hypothesis space H = (h;)jcw. Since we exclusively deal with the learn-
ability of indexable classes C, we always assume that H is also an indexing of
some possibly larger indexable class. Hence, membership is uniformly decidable
in H, too. If C C {h; | j € N} (C = {h; | j € IN}), then K is said to be a
class comprising (class preserving) hypothesis space for C (cf. [20]). When an
IIM outputs some number j, we interpret it to mean that it hypothesizes h;.

We define convergence of IIMs as usual. Let ¢ be a text and let M be an IIM.
The sequence (M (ty))yemnw of M’s hypotheses converges to a number j iff all but
finitely many terms of it are equal to j.

Now, we are ready to define learning in the limit.

Definition 1 ([6,10]). Let C € ZC, let ¢ be a concept, let H = (hj)jem be a
hypothesis space, and let a € IN U {*}.

An IIM M Lim®Tzty —identifies c iff, for every t € Text(c), there is a j € N
with h;y =* ¢ such that the sequence (M (ty))yemn converges to j.

M Lim°®Tzty —identifies C iff, for all ' € C, M Lim®Txty —identifies c'.

Lim®Tzt denotes the collection of all indezable classes C' for which there
are a hypothesis space H' = (h;)jew and an IIM M such that M Lim®Txty -
tdentifies C'.

Subsequently, we write LimTxt instead of Lim®Tzt. We adopt this convention
to all learning types defined below.

In general, it is not decidable whether or not an IIM has already converged on
a text ¢ for the target concept ¢. Adding this requirement to the above definition
results in finite learning (cf. [10]). The resulting learning type is denoted by
Fin®Txt, where again a € IN U {x}.

Next, we define conservative IIMs. Intuitively speaking, conservative IIMs
maintain their actual hypothesis at least as long as they have not seen data
contradicting it.

Definition 2 ([2]). Let C € ZC, let ¢ be a concept, let H = (h;)jew be a hypoth-
esis space, and let a € IN U {}.

An IIM M Consv®Txty —identifies ¢ iff M Lim®Txty —identifies ¢ and, for
every t € Text(c) and for any two consecutive hypotheses k = M(ty,) and j =
M(ty11), ifk € IN and k # j, then content(ty41) € hs.

M Consv®Tzty —identifies C iff, for all ! € C, M Consv®Txty —identifies c'.

For every a € IN U {*}, the resulting learning type Consv®Txt is defined
analogously to Definition 1.

Learning Recursive Concepts with Anomalies 105

Next, we define set-driven learning. Intuitively speaking, the output of a set-
driven IIM depends exclusively on the content of its input, thereby ignoring the
order as well as the frequency in which the examples occur.

Definition 3 ([18]). Let C € IC, let ¢ be a concept, let H = (h;)jew be a
hypothesis space, and let a € IN U {*}.

An IIM M Sdr®Tzty —identifies ¢ iff M Lim®Tzty —identifies ¢ and, for every
t,t' € Text(C) and for alln,m € IN, if content(i,) = content(t,,) then M(t,) =
M)

M Sdr®Tzty —identifies C iff, for all ' € C, M Sdr®Txzty —identifies c'.

For every a € IN U {x}, the resulting learning type Sdr®Tzt is defined analo-
gously to Definition 1.

At the end of this subsection, we provide a formal definition of behaviorally
correct learning.

Definition 4 ([4,6]). Let C € IC, let ¢ be a concept, let H = (hj)jen be a
hypothesis space, and let a € IN U {*}.

An IIM M Bce*Trty —identifies ¢ iff, for every t € Text(c) and for all but
finitely many y € IN, hpr(z,) = c.

M BcTzty —tdentifies C off, for all ' € C, M Bc®Txty —identifies ¢'.

For every a € IN U {x}, the resulting learning type Bc®Tzt is defined analo-
gously to Definition 1.

2.3 Incremental concept learning

Now, we formally define the different models of incremental learning. An or-
dinary IIM M has always access to the whole history of the learning process,
l.e., it computes its actual guess on the basis of the whole initial segment of
the text ¢ seen so far. In contrast, an iterative IIM is only allowed to use its
last guess and the next element in ¢. Conceptually, an iterative IIM M defines
a sequence (M,)new of machines each of which takes as its input the output of
its predecessor.

Definition 5 ([19]). Let C € IC, let ¢ be a concept, let H = (h;)jew be a
hypothesis space, and let a € IN U {*}.
An IIM M I°Txty —identifies ¢ iff, for every t = (@n)nenw € Text(c), the
following conditions are fulfilled:
(1) for all n € IN, M,(t) is defined, where Mo(t) = M(=o) and M,41(t) =
M(Mp(t), n41).
(2) the sequence (M, (t))new converges to a number j with hy =% c.
M It°Txty —identifies C iff, for each ¢! € C, M It*Txty —identifies c'.

For every a € IN U {x}, the resulting learning type [t“Tat is defined analo-
gously to Definition 1.

Let M be an iterative IIM as defined in Definition 5 and ¢ be a text.
Then, M, (t,) denotes the last hypothesis output by M when processing t,,
ie.,, M.(t,) = M,(t). We adopt this convention to all versions of incremental
learners defined below.

106 Gunter Grieser et al.

Next, we consider a natural relaxation of iterative learning, named k-bounded
example-memory inference. Now, an IIM M is allowed to memorize at most k
of the elements in ¢ which it has already seen, where & € IN is a prior: fixed.
Again, M defines a sequence (M,)necw of machines each of which takes as input
the output of its predecessor. A k-bounded example-memory IIM outputs a
hypothesis along with the set of memorized data elements.

Definition 6 ([15]). Let C € IC, let ¢ be a concept, let H = (h;)jew be a

hypothesis space, let a € INU {x}, and let k € IN.

An IIM M BemyTxty—identifies c iff, for every t = (2n)new € Teat(c), the
following conditions are satisfied:

(1) for all n € IN, M,(t) is defined, where Mo(¢t) = M(zo) = (jo,So) such
that Sy C {20} and card(So) < k and Mpi1(t) = M(M,(t),2nt1) =
(Jn+1, Snt1) such that Spy1 C Sp U {@ny1} and card(Spi1) < k.

(2) the jn in the sequence ({jn, Sn))ncw of M ’s guesses converge to a number j
with h; =% c.

M BemiTxty —identifies C iff, for each ¢! € C, M Bem}Tzty —identifies ¢'.

For every k € IN and every a € INU{x}, the resulting learning type BemjTxt
is defined analogously to Definition 1. By definition, BemgTat = It*Txt.

Next, we define learning by feedback IIMs. Informally speaking, a feedback
IIM M is an iterative ITM that is additionally allowed to make a particular type
of queries. In each learning stage n + 1, M has access to the actual input #,41
and its previous guess j,. Moreover, M computes a query from #,,1 and 7,
which concerns the history of the learning process. That is, the feedback learner
computes a data element # and receives a “YES/No” answer A(z) such that
A(z) = 1, if « € content(t,), and A(z) = 0, otherwise. Hence, M can just
ask whether or not the particular data element # has already been presented in
previous learning stages.

Definition 7 ([19]). Let C € IC, let ¢ be a concept, let H = (hj)jew be a

hypothesis space, let a € IN U {x}, and let Q:IN x X — X be a total computable

function. An IIM M, with a computable query asking function Q, Fb®Txts -
identifies c iff, for every t = (®n)new € Text(c), the following conditions are
satisfied:

(1) for alln € IN, M, (t) is defined, where Mo(t) = M (o) as well as My 1(1) =
M (Mo (2), A(Q(Mn (2), 2041)), 2ns1)-

(2) the sequence (M, (t))new converges to a number j with h; =* ¢ provided A
truthfully answers the questions computed by Q.

M Fb*Txty —identifies C iff, for each ¢’ € C, M Fb*Txty —identifies c'.

For every a € IN U {*}, the resulting learning type Fb“Tzt is defined analo-
gously to Definition 1.

3 Learning from positive data only

In this section, we study the power and the limitations of the various models
of learning with anomalies. We relate these models to one another as well as to

Learning Recursive Concepts with Anomalies 107

the different models of anomaly-free learning. We are mainly interested in the
case that the number of allowed anomalies is finite but not a prior:i bounded.
Nevertheless, in order to give an impression of how the overall picture changes
when the number of allowed anomalies is a prior: bounded, we also present
selected results for this case.

3.1 Gold-style learning with anomalies

Proposition 1 summarizes the known relations between the considered models
of anomaly-free learning from text.

Proposition 1 ([10,14,16]).

FinTat C ConsvTat = SdrTzt C LimTzt = BeTzt C IC.

In the setting of learning recursive functions the first observation made when
comparing learning in the limit with anomalies to behaviorally correct inference
was the error correcting power of Bc-learners, i.e., Ez* C Bc (cf., e.g., [4,7]).
Interestingly enough, this result did not translate into the setting of learning
recursively enumerable languages from positive data (cf. [6]). But still, a certain
error correcting power is preserved in this setting, since Lim®Tzt C BcbTat
provided a < 2b (cf. [6]).

When comparing learning with and without anomalies in our setting of learn-
ing indexable classes, it turns out that even finite learners may become more
powerful than Bc-learners.

Theorem 1. Fin'Txt \ BeTet # 0.

However, the opposite is also true. For instance, PAT, the well-known class
of all pattern languages (cf. [2]), witnesses the even stronger result:

Theorem 2. ConsvTzt \ Fin*Txt # 0.

As we will see, the relation between the standard learning models changes
considerably, if it is no longer required that the learner must almost always out-
put hypotheses that describe the target concept correctly. The following picture
displays the established coincidences and differences by relating the models of
learning with anomalies to one another and by ranking them in the hierarchy of
the models of anomaly-free learning.

Fin*Txt C Consv* Tt = Sdr* Tzt = Lim*Txt C Be*Txt C IC
U U U U U
FinTxt C ConsvTzt = SdrTzt C LimTzt = BcTxt

To achieve the overall picture, we establish characterizations of all models of
learning with a finite but not a prior: bounded number of anomalies. On the
one hand, we present characterizations in terms of finite tell-tale sets. On the
other hand, we prove that some of the learning models coincide.

Proposition 2 ([17]). For all C € IC and all a € N U {*}: C € Lim®Tzt iff
there is an indezing (¢;)jew of C and a recursively enumerable family (Tj);emw
of finite sets such that

108 Gunter Grieser et al.

(1) forall j e N, T; C ¢,
(2) for all jk € IN, if T; C ¢y, C ¢;, then e =% ¢;.

The characterization of Fin*Txt is similar to the known characterization of
FinTat (cf. [13]).

Theorem 3. For all C € ZIC: C € Fin*Txt iff there is an indexing (c;j)jenw of C
and a recursively generable family (T;);cw of finite sets such that

(1) forall j e N, T; C ¢,

(2) for all jk € IN, if T; C ¢, then cp =* ¢;.

In contrast to Proposition 1, when a finite number of errors in the final
hypothesis is allowed, conservative IIMs become exactly as powerful as uncon-
strained ITMs.

Theorem 4. Lim*Txt = Consv*Txt.

Proof. Let C € Lim*Txt, let H = (h;)jew be a hypothesis space, and let M
be an IIM that Lim*Tzty—identifies C. Moreover, assume that M never outputs
“?.” The conservative IIM M' uses the following hypothesis space H’. For all
j€ N and @ € X, we let h} = h; \ {z}. Moreover, we let ' be the canonical
enumeration of all those concepts h_lj,a:‘

Let ¢ € C, let t = (2;)jew be a text for ¢, and let y € IN. On input ¢,, M’
determines j = M (ty), and outputs the canonical index of h; , in H'.

It is straightforward to verify that M is a conservative IIM that witnesses
C € Lim*Txt.]

As it turns out, when learning with anomalies is considered, set-driven learn-
ers become exactly as powerful as unconstrainted IIMs, again nicely contrasting
Proposition 1.

Theorem 5. Sdr*Txt = Lim*Txt.

However, there is a difference between conservative inference and set-driven
learning, on the one hand, and learning in the limit, on the other hand, which
we want to point out next. While learning in the limit is invariant to the choice
of the hypothesis space (cf. [17]), conservative inference and set-driven learning,
respectively, is not. Moreover, in order to design a superior conservative and a
set-driven learner, respectively, it is sometimes inevitable to select a hypothesis
space that contains concepts which are not subject to learning.

Theorem 6.

(1) There is an indezable class C € Consv*Txt such that, for all class preserving
hypothesis spaces H for C, there is no IIM M that Consv* Tty —identifies C.
(2) There is an indezable class C € Sdr*Tzt such that, for all class preserving
hypothesis spaces H for C, there is no IIM M that Sdr* Tzt —identifies C.

For conservative learning and set-driven inference without anomalies, the
analogue of Theorem 6 holds, as well (cf. [14,16]).

Next, we study behaviorally correct identification. As we will see, finite tell-
tale sets form a conceptual basis that is also well-suited to characterize the

Learning Recursive Concepts with Anomalies 109

collection of all Bc*Tzt—identifiable indexable classes. Surprisingly, the existence
of the corresponding tell-tale sets is still sufficient.

Theorem 7. For all C € IC: C € Bc*Tat off there is an indexzing (¢;)jen of C
and a family (T)jew of finite sets such that

(1) forall j e N, T; C ¢,

(2) for all jk € IN, if T; C ¢, C ¢j, then cx =* ¢;.

Proof. Due to the space constraint we sketch the sufficiency part, only. First,
we define an appropriate hypothesis space H = (h;,z))j,reN- Let (F)jemw be an
effective enumeration of all finite subsets of X and let (w;)jen be the lexico-
graphically ordered enumeration of all elements in X.

We subsequently use the following notions and notations. For all ¢ C X and
all z € IN, we let ¢* = {w, | » < 2z, w, € c}. Moreover, for all j, k,z € IN, we
let S(;x,2) be the set of all indices » < k that meet (i) F; C ¢, and (ii), for all
P’ < r with ¢t D Fj, ¢z C cZi.

Now, we are ready to define the required hypothesis space H. For all 5,k € IN
we define the characteristic function of h(; z) as follows. If S;z .) = 0, we set
hiry(w:) = — I Sig,.y # 0, we let n = maz S(; 1) and set hy;py(w;) =
en(w,).

Since membership is uniformly decidable in (¢;);en, we know that H consti-
tutes an admissible hypothesis space.

The required IIM M is defined as follows. Let ¢ € C, ¢t € Text(c), and y € IN.

IIM M: “On input ¢, proceed as follows:
Determine j € IN with F; = content(t,) and output (j,y).”

Due to lack of space, the verification of M’c correctness is omitted. a

Note that Baliga et al. [3] have recently shown that the same characterizing
condition completely describes the collection of all indexable classes that are
Bc*Trt-identifiable with respect to arbitrary hypothesis spaces (including hy-
pothesis space not having a decidable membership problem). Hence, our result
refines the result from [3] in that it shows that, in order to Bc*Tzt—identify an
indexable class, it is always possible to select a hypothesis space with uniformly
decidable membership. However, as we see next, it is inevitable to select the
actual hypothesis space appropriately.

Theorem 8. There is an indexable class C € Bc*Txt such that, for all class
preserving hypothesis spaces H for C, there is no IIM M that Bc* Tzt —learns C.

In contrast, BcT#t is invariant to the choice of the hypothesis space.

To be complete, note that it is folklore that there are indexable classes which
are not Bc*Tzt-identifiable. Furthermore, applying the stated characterizations
of the learning types Fin*Tzt, Lim*T2t, and Bc*Txt, the following hierarchy can
be shown.

Theorem 9. Fin*Txt C Lim*Txt C Bc*Txt C IC.

At the end of this subsection, we turn our attention to the case that the
number of allowed anomalies is a prior:i bounded. On the one hand, Case and
Lynes’ [6] result that Lim?*Tet C Bc®Tzt nicely translates into our setting.

110 Gunter Grieser et al.

Surprisingly, the opposite is also true, i.e., every IIM that Bc®Tzi—identifies a
target indexable class can be simulated by a learner that Lim?®Txzt-identifies
the same class, as expressed by the following theorem.

Theorem 10. For all a € IN: Bc®*Txt — Lim**Txt.

Proof. Let a € IN. As mentioned above, Lim2°Tzt C Bc®Txt can be shown by
adapting the corresponding ideas from [6] (see also [11], for the relevant details).

Next, we verify that Be®Tet C Lim?*Txt. Let C € Bc®Tat, let H be a hypoth-
esis space, and let M be an IIM that Bc®Txty—identifies C. Since membership is
uniformly decidable in H, the set {(j, k) | h;j #2* hy} is recursively enumerable.
Hence, without loss of generality, we may assume that there is a total recursive
function f:IN — IN x IN such that {f(n) | n € IN} = {(j, k) | hj #>* hs}.

The required IIM M’ also uses the hypothesis space H. Let ¢ € C, t € Text(c),
and y € IN.

IIM M': “On input %, proceed as follows:
If y = 0, set z = 0, determine jo = M(¢o), and output jo. If y > 1, determine
Jj=M'(ty_1). For all s = z,...,y, determine j, = M(¢,), and test whether
or not (,7s) € {f(n) | n < y}. In case there is no such pair, then output j.
Otherwise, set z = y and output j,.”

Since M Bc®Tzty—identifies ¢ from ¢, there has to be a least y such that, for
all ¥ >y, ha(t,) =* ¢, and therefore, for all v,y > v, ha(s,.) =2e har(e,u)-
Hence, M’ converges on t to a hypothesis j that meets h; =2 c. a

Applying Theorem 2, we may conclude:

Corollary 11. For all C € ZC and alla € IN: C € BTzt iff there is an indexing
(¢j)jen of C and a recursively enumerable family (T;);cmw of finite sets such that
(1) for all j e N, T; C ¢, and

(2) forall j,k € N, if T; C ¢y, and cx C cj, then ¢ =% ¢;.

The latter corollary nicely contrasts the results in [3]. When arbitrary hy-
pothesis spaces are admissible (including hypothesis space not having a decidable
membership problem), there is no need to add any recursive component, i.e., the
existence of the corresponding tell-tale sets is again sufficient.

Moreover, the relation between set-driven learners and conservative inference
changes completely, if the number of allowed anomalies is a prior: bounded.

Theorem 12. Consv' Tzt \ |J,cpe Sdr®Tet # 0.
Theorem 13. For alla € IN: Sdr®Txt C Consv®Txt.

The relation between conservative learners and unconstrained IIMs is also
affected, if the number of allowed anomalies is a priori bounded.

Theorem 14. For all a € IN: Lim®Txt C Consv® 1 Txt C Lim® 1 Tat.

Proof. Let a € IN. By definition, we get Consv® Tzt C Lim® ' Txt. More-
over, Consv® ' Tt \ Lim®Tet # 0 follows via Theorem 15 below. Furthermore,
Lim®™' Tt \ Consv® Tzt # 0 can be shown by diagonalization.

It remains to show that Lim®Tet C Consv® ' Tat. To see this, recall the
definition of the conservative IIM M’ from the demonstration of Theorem 4. It

Learning Recursive Concepts with Anomalies 111

is easy to see that the final hypothesis of M' differs at most at one data point
from the final hypothesis of the unconstrained IIM M which M’ simulates. O

Finally, when learning with an @ priori bounded number of allowed anomalies
is considered, the existence of infinite hierarchies of more and more powerful
Fin-learners, Consv-learners, Lim-learners, and Bc-learners, parameterized in
the number of allowed anomalies, can be shown. The following theorem provides
the missing piece to establish these infinite hierarchies.

Theorem 15. For all a € IN: Fin®* "' Tet \ Bc®Tat # 0.

3.2 Incremental learning with anomalies

Proposition 3 summarizes the known results concerning incremental learning.

Proposition 3 ([15]).

(1) ItTzt C FbTat.

(2) ItTxt C BemqTat.

(3) For all k € IN, BemyTat C Bemy1Txt.
(4) Bem Tzt \ FbTzt # 0.

(5) FoTxt \ Uy BempTat £ 0.

The overall picture remains unchanged for incremental learning with a finite
number of allowed anomalies.

More specifically, iterative learners that have the freedom to store one addi-
tional example may outperform feedback learners that are allowed to make up
to finitely many errors in their final hypothesis.

Theorem 16. Bem Tzt \ Fb*Txt +# 0.

Proof. The separating class C is defined as follows. C contains ¢ = {a}* and,
forall j > 1,¢; = {a* | 1 < £ < 25} U {b}*. Moreover, for all j, k,m > 1, C
contains the concept ¢; ,, = {a|1<£<25}u{a?U*H1 U {pt |1 < €< m}

Claim 1. C € BemTzt.

The required IIM M updates its example-memory as follows. As long as no
element from {b}* occurs, M memorizes the maximal element from {a}T seen
so far. Otherwise, it memorizes the maximal element from {b}* that has been
presented so far. In addition, M updates its hypotheses in accordance with the
following cases.

Case 1. M has never received an element from {b}T.

Then, M guesses cp.

Case 2. M receives an element = from {b} for the first time.

Let @ = b™. If M has memorized an element of type a%/, M guesses cj. If
it has memorized an element of type a?t:*+1 M guess c;’k’m. If is the first
element presented at all, M simply guesses c;.

Case 3. Otherwise.

Let # be the new element presented, let ¢’ be M’s actual guess, and let b™
be the element memorized by M.

First, if # € {b}T and ¢ is of type CG k.o
maz {m, |z|}. If € {b}T and ¢’ is of type c;, M guesses c’.

M guesses c where m' =

J,k,m'

112 Gunter Grieser et al.

Second, if # € {a}t and # € ¢', M guesses ¢'. If 2 € {a}T, 2 ¢ ¢/, and =
is of type a?, M guesses c;. Otherwise, ie., z € {a}T, ¢ ¢/, and @ is of type
a?li#) 1M guesses S km

The verification of M’s correctness is straightforward.

Claim 2. C ¢ Fb*Txt.

Suppose to the contrary that there is a feedback learner M’ that witnesses
C € Lim*Tzt. Hence, there is a locking sequence o for cp, i.e., o is a finite
sequence with content(o) C ¢o and, for all finite sequences p with content(p) C
co, M](0 o p) = M](o).

Let j be the least index with content(s) C ¢;. Consider M when fed the
textt = g oa,...,a obob,b2ob, b2 b2 0---0b,b% ..., b" o - for ¢j. Since M’
learns ¢;, M' converges on t. Hence, there is a y such that (i) the last element
in ¢, equals b and (ii), for all » € IN, M (ty) = M/(ty4r).

Finally, fix 7 such that ¢, = o oa,..., a? o 7. Let k, m be the least indices
such that content(t,) C ¢}, ., and a?U:F)+1 s an element from co which M’
has never asked for when processing t,. Consider M’ when fed the text ¢’ =
coa,...,a oa?@RFl o 1o b, ... for c;k m- By the choice of ¢ und y, M’
converges on t and t' to the same hypotheéié. (To see this note that the b’s at
the end of ¢’ guarantee that M’ almost always ask the same question as in case it
is fed ¢, thereby, due to choice of a?li#) 41 always receiving the same answer.)

Since ¢; #* ¢, M' cannot learn both concepts, a contradiction. a
vy

The opposite holds, as well. Feedback queries may compensate the ability of
a bounded-example memory learner to memorize any a priori fixed number of
examples and to make finitely many errors in its final hypothesis.

Theorem 17. FbTxt \ |,y Bemj Tzt # 0

Proof. We define the separating class C as follows. We set C = |Jpc Crs
where, for all k& € IN, the subclass Cj, is defined as follows.

Let (Fj)jem be a repetition-free enumeration of all finite sets of natural
numbers. By convention, let Fo = 0. Moreover, we let Po = {b} and Pj;1 =
P;\ {b™? | n > 1}, where, for all j € N, p; is the j + 1-st prime number.

Let k& € IN. Then, Cy contains the concept co = {a}T as well as, for all
Jym > 1 and all lp,...,l; with j < lp < --- < li, the concept c(jm ,,...1) =
{fat |1 <t<j}ud{al,...,a*}U{bT | j € Fn}U Py, 1) U{d}.

By definition, C contains exclusively infinite concepts, and thus C € FbTxt
(cf. [8], for the relevant details).

For proving C ¢ Uke]N Bem; Txt, it suffices to show that, for every k € IN,
Cr ¢ Bem;Tzt. The corresponding verification is part of the demonstration of
Theorem 18 below. ad

Our next result illustrates the error-correcting power of bounded example-
memories. As it turns out, every additional example which an incremental learner
can memorize may help to correct up to finitely many errors.

Theorem 18. For all k € IN, Bemy1Tzt \ Bem;Tzt # 0.

Proof. Let k € IN. We claim that Cj (cf. the demonstration of Theorem 17
above) separates the learning types Bemp1T2t and BemTxt.

Learning Recursive Concepts with Anomalies 113

Claim 1. C, € Bemp 1 Txt.

The required bounded example-memory learner M behaves as follows. As a
rule, M memorizes the k + 1 longest elements from {a}T which it has seen so
far. Moreover, M updates its hypotheses in accordance with the following cases.

Case 1. M has never received an element from {d}*.

Then, M outputs an index for the concept co that allows M to determine all
elements from {b}T that have been presented so far.

Case 2. M receives an element ® from {d}T for the first time.

Let # = &’ and let S’ be the set of all elements from {b}* seen so far. M
outputs an index for the concept {a’ |1 < £ < j} U{d’} U S’ that allows M to
determine the elements in S’.

Case 3. Otherwise.

We distinguish the following subcases.

Case 3.1. M has memorized k + 1 elements s with |s| > j.

Let & be the new element presented, let S = {a’,...,a'*} be the set of
elements memorized by M, and let S’ be the set of elements from {b*} that are
encoded in M’s last hypothesis. If z € {b}* \ Py, ..1,), we let S’ = §' U {«}.
Otherwise, S’ remains unchanged. Moreover, M outputs an index for the concept
{a* |1 <£<}USUS UPy,, 1, U{d} that allows M to recompute the
elements in S’.

Case 3.2. Not Case 3.1.

As above, M outputs an index of the concept {a’ |1 < £ < j}u{di}u s
that allows M to determine the elements in S’, where S’ is again the set of all
elements from {b}T seen so far.

The verification of M’s correctness is straightforward.

Claim 2. C, ¢ BemjTxt.

Suppose to the contrary that there is a k-bounded example-memory learner
M’ that witnesses C € Lim*Txt. Hence, there is a locking sequence o for co,
i.e., o is a finite sequence with content(ad) C ¢o and, for all finite sequences p
with content(p) C co, m1(ML(0 ¢ p)) = m1(M](c)).! Now let 5 = maz {|z| |z €
content(c)}. Similarly as in the demonstration of Theorem 6 in [15], one may

use counting arguments to show that there are indices lo, [, . .., I, l;, such that
Conditions (a) to (d) are fulfilled, where

(a) j<l0<l1 < -ee < .

by j<ly<l<---<l.

(c) {lo, b, I} # {lo, 11, 1}

(d) Ml(coadb,...,a*) = Ml(coab,...,d%).

Assume that (lo,...,Is) < {I},...,l,). Let t; and] be the lexicographically
ordered text for Py, . ;) and P(l{],...,l;‘), respectively. Moreover, we set o' =

coa,a?,...,a’. Since M' infers €(4,0,l0,...,1x), there is a finite sequence 7 with
content(T) C Py,,...1,) such that, for all finite sequences p with content(p) C
P,,...) T (M (o' oale,...,a*odi o)) = m(Ml(c'odb,...,d* odi o T0p)).

! Recall that M outputs pairs (5, S). By convention, we let 71((5,5)) = j.

114 Gunter Grieser et al.

Now, fix m’ € IN with F,» = {£ | b* € content(r)} and consider M’ when
successively fed the text t = ¢/ oal,al,... ,a'* o df o T 0t for €(4,0,10,...,1) and

o L o Ji ' :
o,a'1,...,aod’ oToty for ¢ mi L)) respectively. By the

the text t' = o' ¢a k7

choice of ¢ and 7 and since, by definition, P(l,’J,...,l;‘) C Py,,...,1,)» we may conclude

that M’ converges to the same hypothesis when fed ¢ and t’, respectively. Since

C(5,0,l0,. 1) 7 C(jmt Ty)) M' cannot learn both concepts, a contradiction. O
For incremental learning with anomalies, Proposition 3 rewrites as follows.

Corollary 19.

(1) t*Tzt C Fb*Tat.

(2) It*Tet C BemTxt.

(3) For allk € IN, Bem;Txt C Bemy Txt.
(4) Bem Tzt \ Fb*Txt £ 0.

(5) Fo* Tat \ Uy Bem Tt # 0.

4 Learning from positive and negative data

In the section, we briefly summarize the results that can be obtained when
studying learning with anomalies from positive and negative data.

Let X be the underlying learning domain, let ¢ C X be a concept, and
let ¢ = ((#n,bn))neN be any sequence of elements of X x {4, —} such that
content(i) = {&, | n € N} = X, content™ (i) = {&, | n € N, b, = +} = c and
content” (1) = {&n | n € IN, b, = —} = X \ ¢ = . Then, we refer to ¢ as an
informant. By Info(c) we denote the set of all informants for c.

For all a € IN U {x}, the standard learning models Fin®Inf, Consv®Inf,
Lim®Inf and Bc®Inf are defined analogously as their text counterparts by re-
placing text by informant. Moreover, we extend the definitions of all variants of
iterative learning in the same manner and denote the resulting learning types
by It®Inf, Fb°Inf, and Bemplnf, where k € IN.

Since ZC = ConsvInf (cf. [10]), we may easily conclude:

Corollary 20.
For alla € N U {x}: ConsvInf = Consv®Inf = Lim®Inf = Bc“Inf.
Moreover, one can easily show that the known inclusions FinTzt C FinInf
and Finlnf C ConsvTxt (cf. [13]) rewrite as follows:
Theorem 21. Fin*Txt C Fin*Inf C Consv*Txt.

Concerning incremental learning, it has recently be shown that ZC = Fblnf =
BemqInf (cf. [12]). Clearly this allows for the following corollary.

Corollary 22. For all a € N U {x}: Consvinf — Fb*Inf — Bem{Inf.

Moreover, it is folklore that ZC = It*Inf. In contrast, if the number of allowed
anomalies is a priori bounded, an infinite hierarchy of more and more powerful
iterative learners can be observed.

Theorem 23. Itlnf C It'Inf C It%Inf C --- C It*Inf = Consvinf.

Finally, it is not hard to verify that the results obtained so far prove the
existence of an infinite hierarchy of more and more powerful finite learners pa-
rameterized in the number of allowed anomalies.

Learning Recursive Concepts with Anomalies 115

References

1. D. Angluin. Finding patterns common to a set of strings. Journal of Computer and
System Sciences, 21:46—62, 1980.

2. D. Angluin. Inductive inference of formal languages from positive data. Information
and Control, 45:117-135, 1980.

3. G.R. Baliga, J. Case, and S. Jain. The synthesis of language learners. Information
and Computation, 152:16—43, 1999.

4. J. Barzdigs. Two theorems on the limiting synthesis of functions. In Theory of Algo-
rithms and Programs Vol. 1, pages 82—-88, Latvian State University, 1974, (Russian).

5. L. Blum and M. Blum. Toward a mathematical theory of inductive inference. In-
formation and Control, 28:122-155, 1975.

6. J. Case and C. Lynes. Machine inductive inference and language identification.
In Proc. 9th International Colloguium on Automata, Languages and Programming,
Lecture Notes in Computer Science 140, pages 107-115. Springer-Verlag, Berlin,
1982.

7. J. Case and C.H. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science 25:193-220, 1983.

8. J. Case, S. Jain, S. Lange, and T. Zeugmann, Incremental concept learning for
bounded data mining. Information and Computation 152:74-110, 1999.

9. M. Fulk. Prudence and other restrictions in formal language learning. Information
and Computation, 85:1-11, 1990.

10. E.M. Gold. Language identification in the limit. Information and Control, 10:447—
474, 1967.

11. S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn - 2nd Edition,
An Introduction to Learning Theory. MIT Press, Cambridge, Mass., 1999.

12. S. Lange and G. Grieser. On the strength of incremental learning. In Proc. 10th In-
ternational Conference on Algorithmic Learning Theory, Lecture Notes in Artificial
Intelligence 1720, pages 118-131. Springer-Verlag, Berlin, 1999.

13. S. Lange and T. Zeugmann. Types of monotonic language learning and their
characterization. In Proc. 5th Annual ACM Workshop on Computational Learning
Theory, pages 377-390. ACM Press, New York, 1992.

14. S. Lange and T. Zeugmann. Language learning in dependence on the space of hy-
potheses. In Proc. 6th Annual ACM Conference on Computational Learning Theory,
pages 127-136. ACM Press, New York, 1993.

15. S. Lange and T. Zeugmann. Incremental learning from positive data. Journal of
Computer and System Sciences, 53:88-103, 1996.

16. S. Lange and T. Zeugmann. Set-driven and rearrangement-independent learning
of recursive languages. Mathematical Systems Theory, 29:599-634, 1996.

17. T. Tabe and T. Zeugmann. Two variations of inductive inference of languages from
positive data. Technical Report RIFIS-TR-CS-105, Kyushu University, 1995.

18. K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT
Press, Cambridge, Mass., 1980.

19. R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (EIK), 12:93-99, 1976.

20. T. Zeugmann and S. Lange. A guided tour across the boundaries of learning
recursive languages. In K.P. Jantke and S. Lange, editors, Algorithmic Learning
for Knowledge-Based Systems, Lecture Notes in Artificial Intelligence 961, pages
190-258. Springer-Verlag, Berlin, 1995.

Identification of Function Distinguishable
Languages

Henning Fernau

Wilhelm-Schickard-Institut fiir Informatik, Universitat Tiibingen
Sand 13, D-72076 Tiibingen, Germany
fernau@informatik.uni-tuebingen.de

Abstract. We show how appropriately chosen functions which we call
distinguishing can be used to make deterministic finite automata back-
ward deterministic. These ideas can be exploited to design regular lan-
guage classes identifiable in the limit from positive samples. Special cases
of this approach are the k-reversible and terminal distinguishable lan-
guages as discussed in [1,8,10,17,18].

1 Introduction

The learning model we use is identification in the limit from positive samples as
proposed by Gold [13]. In this well-established model, a language class £ (defined
via a class of language describing devices D as, e.g., grammars or automata) is
said to be identifiable if there is a so-called inference machine I to which as input
an arbitrary language L € £ may be enumerated (possibly with repetitions) in
an arbitrary order, i.e., I receives an infinite input stream of words F(1), E(2),

., where £ : N — L is an enumeration of L, i.e., a surjection, and I reacts
with an output device stream D; € D such that there is an N(E) so that, for all
n > N(E), we have D,, = Dy gy and, moreover, the language defined by Dy (g)
equals L.

Recently, Rossmanith [19] defined a probabilistic variant of Gold’s model
which he called learning from random text. In fact, the only languages that are
learnable in this variant are those that are also learnable in Gold’s model. In
that way, our results can also transferred into a stochastic setting.

This model is rather weak (when considering the descriptive capacity of
the device classes which can be learned in this way), since Gold already has
shown [13] that any language class which contains all finite languages and one
infinite language is not identifiable in the limit from positive samples. On the
other hand, the model is very natural, since in most applications, negative sam-
ples are not available. There are several ways to deal with this sort of weakness:

1. One could allow certain imprecision in the inference process; this has been
done in a model proposed by Wiehagen [25] or within the PAC model pro-
posed by Valiant [24] and variants thereof as the one suggested by Angluin [2]
where membership queries are admissible, or, in another sense, by several

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 116-130, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Identification of Function Distinguishable Languages 117

heuristic approaches to the learning problem (including genetic algorithms
or neural networks).

2. One could provide help to the learner by a teacher, see [2].

3. One could investigate how far one could get when maintaining the original
deterministic model of learning in the limit.

The present paper makes some steps in the third direction.

The main point of this paper is to give a unified view on several identifiable
language families through what we call f-distinguishing functions. In particular,
this provides, to our knowledge, the first complete correctness proof of the iden-
tifiability of some language classes proposed to be learnable, as, e.g., in the case
of terminal distinguishable languages. Among the language families which turn
out to be special cases of our approach are the k-reversible languages [1] and
the terminal-distinguishable languages [17,18], which belong, according to Gre-
gor [14], to the most popular identifiable regular language classes. Moreover, we
show how to the ideas underlying the well-known identifiable language classes
of k-testable languages, k-piecewise testable languages and threshold testable
languages transfer to our setting.

The paper is organized as follows: In Section 2, we provide both the nec-
essary background from formal language theory and introduce the central con-
cepts of the paper, namely the so-called distinguishing functions and the function
distinguishable grammars, automata and languages. Furthermore, we introduce
function canonical automata which will become the backbone of several proofs
later on. In Section 3, several characteristic properties for function distinguish-
able languages are established. Section 4 shows the inferrability of the class of
f-distinguishable languages (for each distinguishing function f), while Section 5
presents a concrete inference algorithm which is quite similar to the one given
by Angluin [1] in the case of O-reversible languages. Section 6 exhibits several
interesting special cases of the general setting, relating to k-testable languages,
k-piecewise testable languages and threshold testable languages. Section 7 con-
cludes the paper, indicating practical applications of our method and extensions
to non-regular language families.

2 Definitions

2.1 Formal language prerequisites

X* is the set of words over the alphabet X. X% (X2<F) collects the words whose
lengths are equal to (less than) k. A denotes the empty word. Pref(L) is the set
of prefixes of L and u™'L = {v € X*|uv € L} is the quotient of L C X* by u.
We assume that the reader knows that regular languages can be character-
ized either (1) by left-linear grammars G = (N, T, P, S), where N is the set of
nonterminal symbols, T is the set of terminal symbols, P C N x (N U {A})T*
is the rule set and S € N is the start symbol, or (2) by (deterministic) finite
automata A = (Q,T, 9, g0, QF), where @ is the state set, § C Q x T x @ is the
transition relation, ¢y € @ is the initial state and Qr C @ is the set of final

118 Henning Fernau

states. As usual, 6* denotes the extension of the transition relation to arbitrarily
long input words. The language defined by a grammar G (or an automaton A)
is written L(G) (or L(A), respectively). An automaton is called stripped iff all
states are accessible from the initial state and all states lead to some final state.
Observe that the transition function of a stripped deterministic finite automaton
is not total in general.

Let A= (Q,T,0d,q0,Qr) be a finite automaton. We call an automaton A’ =
(Q,T,d,q0,Q%) general subautomaton if Q' C Q, ¢ C § and Q% C Qp. The
stripped subautomaton of some finite automaton A = (Q, T, d, qo, Q) is obtained
by removing all states from () which are not accessible from the initial state and
all states which do not lead to some final state, together with all triples from
0 which contain states which have to be removed according to the formulated
rules.

We denote the minimal deterministic automaton of the regular language L
by A(L). Recall that A(L) = (Q, T, d, g0, Qr) can be described as follows: Q =
{u™L|u € Pref(L)}, qo = AL = L; Qr = {u"'Lju € L}; and 6(u"'L,a) =
(ua) 'L with u,ua € Pref(L), a € T. According to our definition, any minimal
deterministic automaton is stripped.

Furthermore, we need two automata constructions in the following:

The product automaton A = Ay x Ay of two automata A4, = (Q;, T, 9,
q0,is Qi) for i = 1,2 is defined as A = (Q, 76,90, Qr) With Q@ = Q1 x Qz,
g = (90,1,9.2), Qr = Qr1 X Qrz2, ((q1,¢2),a,(q1,¢)) € 0 iff (q1,a,q7) € 61
and (go, a,qy) € 2.

A partition of a set S is a collection of pairwise disjoint nonempty subsets
of S whose union is S. If 7 is a partition of .S, then, for any element s € S,
there is a unique element of 7 containing s, which we denote B(s,m) and call
the block of m containing s. A partition 7 is said to refine another partition
7' iff every block of ' is a union of blocks of 7. If 7 is any partition of the
state set @ of the automaton A = (Q, T, 6, qo, QF), then the quotient automaton
714 = (x1Q,T,&', Blgo, ™), Q) is given by 71Q = { B(a,m) | ¢ € Q}
(for @ € Q) and (Bi,a, Bs) € §' iff 31 € B13q2 € Bz : (q1,a,q2) € 0.

2.2 Distinguishing functions

In order to avoid cumbersome case discussions, let us fix now T as the terminal
alphabet of the left-linear grammars and as the input alphabet of the finite
automata we are going to discuss.

Definition 1. Let F' be some finite set. A mapping f : T* — F is called a dis-
tinguishing function if f(w) = f(z) implies f(wu) = f(zu) for all u,w,z € T*.

In the literature, we can find the terminal function [18]
Ter(z) ={a €T |Ju,veT" tuav =1}
and, more generally, the k-terminal function [10]

Tery(z) = (mi (), pr (), ok (x)), where
pe(z) ={a T | Ju,v e T* :uav =z}

Identification of Function Distinguishable Languages 119

and 7 () [ox(x)] is the prefix [suffix] of length k of x if x ¢ T<F and 74 (x) =
or(z) = z if z € T<F. The example f(z) = ox(z) leads to the k-reversible
languages, confer [1,10]. We will discuss these and other distinguishing functions
in Section 6. Other examples of distinguishing functions in the context of even
linear languages can be found in [9].

Observe that every regular language R induces, via its Nerode equivalence
classes a distinguishing function fr, where fr(w) maps w to the equivalence class
containing w. Especially, T leads to a trivial distinguishing function fr« : T* —
{q}, and the class of fr«-distinguishable languages coincides with the class of 0-
reversible languages [1] over the alphabet T'. In fact, many assertions, as well as
their proofs, which we state in the following for f-distinguishable automata and
languages correspond to similar assertions for O-reversible language as exhibited
by Angluin.

In some sense, these are the only distinguishing functions, since one
can associate to every distinguishing function f a finite automaton A; =
(F,T,8¢, f(N\), F) by setting d¢(q,a) = f(wa), where w € f~!(q) can be chosen
arbitrarily, since f is a distinguishing function.

Definition 2. Let G = (N, T, P,S) be a left-linear grammar with

PC(NA{S}H x (NA{SHT U {AY U{S} x (N \{S}).

This means that rules in G are of the forms S — A, A — Ba, or A — X for
A,Be N\{S} anda €T. Let f : T* — F be a distinguishing function. We will
say that G s f-distinguishable if:

1. G is backward deterministic, i.e., for all A,B € N, A—w and B —w imply
A=B.

2. For all A€ N\ {S} and for all z,y € L(G, A)," we have f(z) = f(y).
(In other words, for A € N\ {S}, f(A) := f(z) for some x € L(G,A) is
well-defined.)

3. For all A,B,C € N\ {S} with B # C and for alla € T, if (a) S— B and
S—C arein P orif (b) A— Ba and A — Ca are in P, then f(B) # f(C).

A language is called f-distinguishable iff it can be generated by an f-distinguish-
able left-linear grammar.
The family of f-distinguishable languages is denoted by f-DL.

Observe that the class f-DL formally fixes the alphabet of the languages
by the range of f. As we have already seen by the examples for distinguishing
functions listed above, f can oftenly defined for all alphabets. Taking this generic
point of view, for example, Ter-DL is just the class of (reversals of) terminal dis-
tinguishable languages [9,18], where the alphabet is left unspecified.

Remark 1. Our notation is adapted from the so-called terminal distinguishable
languages introduced by Radhakrishnan and Nagaraja in [18]. We use left-linear

! We will denote by L(G, A) the language obtained by the grammar G4 = (N, T, P, A).

120 Henning Fernau

grammars, while they use right-linear grammars in their definitions. This means
that, e.g., the class Ter-DL coincides with the reversals (mirror images) of the
class of terminal distinguishable languages, as exhibited in [J].”

Definition 3. Let A = (Q,T,0,q0, Qr) be a finite automaton. Let f : T* — F
be a distinguishing function. A is called f-distinguishable if:

1. A is deterministic.

2. For all states q € Q and all z,y € T* with 6*(qo,x) = 6*(q0,y) = ¢, we have
1) = f(y).
(In other words, for ¢ € Q, f(q) := f(x) for some x with §*(qo,z) = q 1s
well-defined.)

3. For all 1,q2 € Q, q1 # q2, with either (a) q1,q2 € QF or (b) there exist
g3 € Q and a € T with §(q1,a) = 0(q2,a) = g3, we have f(q1) # f(q2)-

For example, for each distinguishing function f, the associated automaton
Ay is f-distinguishable.

Remark 2. Our aim is to show the identifiability of each language class f-DL,
where f is a distinguishing function. To this end, the notion of distinguishing
function was tailored, and we do not see how to provide a simpler notion to
ensure identifiability of the corresponding language classes. For example, it is
easily seen that, for each distinguishing function f : T*— F, any f-distinguishing
automaton has at most |F| accepting states. This conceptual simple property
is not useful to define an identifiable language class, since already the class of
regular languages having a single accepting state is not identifiable in the limit,
as this class contains all languages L,, = {a"™b | n <m} for m = 1,2,..., 00,
see [13].

We need a suitable notion of a canonical automaton in the following.

Definition 4. Let f : T* — F be a distinguishing function and let L CT* be a
regular set. Let A(L, f) be the stripped subautomaton of the product automaton
A(L)x Ay, i.e., delete all states that are not accessible from the initial state or do
not lead into a final state of A(L) x Ay. A(L, f) is called f-canonical automaton
of L.

Remark 3. 1. Observe that an f-canonical automaton trivially obeys the first
two restrictions of an f-distinguishing automaton.
2. Clearly, L(A(L, f)) = L. O

2 Note that their definition of terminal distinguishable right-linear grammar does not
completely coincide with ours, but in order to maintain their results, their definition
should be changed accordingly.

Identification of Function Distinguishable Languages 121

3 Characteristic Properties

We start this section with a sequence of rather straightforward remarks which
turn out to be useful in the proof of the main theorem of this section which
is Theorem 1. There, we derive six equivalent characterizations for regular lan-
guages to be f-distinguishable. In particular, the characterization by f-canonical
automata will be needed in Section 4 in order to prove the inferrability of f-
distinguishable languages, as well as in Section 5 for proving the correctness of
the inference algorithm stated there.

In order to simplify the discussions below, we will always consider only the
case of non-empty languages.

Remark 4. Let f: T*— F be a distinguishing function. Consider L C T™*. Then,
L is f-distinguishable iff L is accepted by an f-distinguishing automaton.

Proof. This easily follows via the standard proof showing the equivalence of left-
linear grammars and finite automata. a

More precisely, the ith (¢ = 1, ¢ = 2, i = 3a, i = 3b) condition for f-
distinguishable left-linear grammars “corresponds” to the ith condition for f-
distinguishable finite automata. In particular, this means that backward deter-
ministic left-linear grammars correspond to deterministic finite automata. Since
it is well-known that the state-transition function ¢ of a finite automaton can be
extended to a (partial) function mapping a state and a word over T into some
state, this observation immediately yields the following:

Remark 5. Let f : T* — F be a distinguishing function and let G be an f-
distinguishable left-linear grammar. Then, for all nonterminals A, B, A =* w
and B =" w imply A = B. *]

Remark 6. Let f : T*— F be a distinguishing function. Let A = (Q, T, 4, g0, QF)
be an f-distinguishing automaton accepting L. Then, we find: If ujv, usv € L C
T* and f(ul) = f(’U,Q), then 5*(q0,u1) = 5*(q0,u2).

Proof. Consider the final states ¢; = §*(qo, u;v) of A for i = 1,2. Since f(¢;) =
f(u;v) and since f(u1) = f(uz) implies that f(uiv) = f(ugv), condition 3a. in
the definition of f-distinguishing automata yields q1 = ¢s.

By induction, and using condition 3b. in the induction step argument, one
can show that 6*(go, u1v") = 0*(qo, u2v’) for every prefix v’ of v. This yields the
desired claim. O

We are now presenting the main result of this section.

Theorem 1 (Characterization theorem). The following conditions are equiv-
alent for a regular language L C T* and a distinguishing function f : T* — F:

1. L is f-distinguishable.

3 This condition has been called strongly backward deterministic in [22].

122 Henning Fernau

2. For all u,v,w,z € T* with f(w) = f(z), we have zu € L <= zv € L
whenever {wu, wv} C L.

3. For all u,v,w,z € T* with f(w) = f(2), we have u € 27'L <= v ez~ 'L

whenever u,v € w'L.

The f-canonical automaton of L is f-distinguishable.

L is accepted by an f-distinguishable automaton.

For all uy,ug,v € T* with f(u1) = f(uz), we have u; 'L = uy 'L whenever

{ulv, UQU} Q L.

S v

Proof. ‘1. — 2.:" Assume firstly that L is generated by an f-distinguishable left-
linear grammar G = (N, T, P,S). Counsider {wu,wv} C L. Due to Remark 5
there will be a unique nonterminal A that will generate w, and both S =* Au
and S =* Av. More specifically, let © = a, ...a; and let

S = Xo = X1a1 = Xgagal = ...= X7._1a,,«_1 A= Xra7. L1 = Au (1)

be the first of the above-mentioned derivations. Consider now a word z € T* with
f(z) = f(w). By definition of distinguishing functions, we have f(zu) = f(wu).
This means that any derivation of zu via G must start with S = X, since
otherwise the third condition (part (a)) of f-distinguishable grammars would
be violated. By repeating this argument, taking now part (b) of the third part
of the definition, we can conclude that any derivation of zu via G must start
as depicted in Equation (1). Similarly, one can argue that any derivation of zv
must start as any derivation of wv for the common suffix v. This means that
any possible derivation of zu via G leads to the nonterminal A after processing
the suffix u, and any possible derivation of zv via G leads to the nonterminal A
after processing the suffix v, as well. Hence, zu € L iff A=* z, and zv € L iff
A =* z. Therefore, zu € L iff zv € L, as required.

‘2.« 3.7 is trivial.

‘3. — 4.: Due to Remark 3, we have to consider only cases 3a. and 3b. of the
definition of f-distinguishable automaton. We will prove that the f-canonical
automaton A = A(L, f) = (Q,T,9,q0,Qr) of L is indeed f-distinguishable by
using two similar contradiction arguments.

Assume firstly that there exist two different final states q1, g2 of A, i.e., ¢; =
(w;lL,XZ-) with wflL #+ w;lL and X = X; = X5. We may assume that
X = f(wy) = f(wsz). Consider two strings u,v € wflL. Since we may assume
property 3., we know that either u,v € w;lL or u,v ¢ w;lL. Since ¢; and g9
are final states, v = A € w; 'L Nw, *L. This means that v € w; 'L implies
v € wz_lL. Interchanging the roles of w; and wsy, we obtain wl_lL = w2_1L, a
contradiction.

Secondly, consider two different states ¢1, g2 of A such that there is a third
state g3 with 0(q1,a) = d(q2,a) = g3. We have to treat the case that ¢; =
(w; 'L, X;) (where i = 1,2) with w; 'L # w, 'L and X = X; = X,. We may
assume that X = f(w1) = f(w2). Since A is stripped by definition, there exists
a suffix s such that wias, weas € L. Hence, as € w; ' LNwy ' L. This means that
v € wy 1L implies v € Wy ! L. Interchanging the roles of w; and wy, we obtain
wy'L = wy 'L, a contradiction.

Identification of Function Distinguishable Languages 123

‘4. — 5.7 is trivial.

‘5. <> 1.” see Remark 4.

‘4. — 6.” follows immediately by using Remark 6.

‘6. — 4.”: Let the regular language L C T satisfy condition 6. Consider
A=A(L,f) = (Q,T,6,q,Qr). Due to Remark 3, we have to verify only con-
dition 3. in the definition of f-distinguishing automata for A. If uy,us € L with
f(uy) = f(uz), then uy 'L = uy ' L. Hence, 6*(qo, u1) = 6*(qo, uz), i.e., A satisfies
condition 3a.

Consider two states u; 'L, uy "L of A(L) with f(u1) = f(uz2). Assume that
(ura)™'L = (uga)™'L for some a € T. Since A(L, f) is stripped by defini-
tion, there is some v’ € T* such that {ujav’,usav’'} C L. Hence, §*(qo,u1) =
5*(qo, uz2), i.e., A satisfies condition 3b. a

Observe that the characterization theorem yields new characterizations for
the special cases of both k-reversible and terminal distinguishable languages.
More precisely, the first three characterizing conditions are new in the case of k-
reversible languages, and the last three conditions are new in the case of terminal
distinguishable languages.

We end this section with providing two further lemmas which will be useful
in the following sections.

Lemma 1. Let f be a distinguishing function. Any general subautomaton of an
f-distinguishable automaton is f-distinguishable.

Proof. By definition. a

Lemma 2. Let f be a distinguishing function. The stripped subautomaton of an
f-distinguishable automaton is isomorphic to the f-canonical automaton.

Proof. Denote by A" = (Q',T,d',qo, Q%) the stripped subautomaton of some
f-distinguishable automaton A = (Q, T, d, o, @F). According to Lemma 1, A’ is
f-distinguishable. We have to show that, for all ¢1,¢2 € Q' with f(¢1) = f(g2),

{veT | 6"(q,v) €Qp} ={veT [07(q2,v) €Qr} = a1 =g,

since then the mapping ¢ — (w™'L(A), f(q)) for some w € T* with 6"*(qo, w) = q
in A’ will supply the required isomorphism.

Since A’ is stripped, there exist strings wi,us,v € T* with g1 = §"*(qo, u1),
g2 = 0" (qo,u2) and {uiv,usv} C L(A). Since f(q1) = f(g2) implies f(u1) =
f(u2), we can apply Remark 6 in order to conclude that g; equals ¢a. a

4 Inferrability

According to a theorem due to Angluin [15, Theorem 3.26], a language class £ is
inferable if any language L € L has a characteristic sample, i.e., a finite subset
X(L) C L such that L is a minimal language from £ containing x(L).

124 Henning Fernau

For the language class f-DL and some language L € f-DL, consider the
corresponding f-canonical automaton A(L, f) = (Q, T, 4, qo, Qr) and define

X(L, f) ={u(q)v(q) | ¢ € Q}
U {u(q)av(é(g,a)) | g€ Q,a €T},

where u(g) and v(g) are words of minimal length with §*(go,u(q)) = ¢ and
0*(q,v(q)) € Qp. Naturally, a finite automaton for x (L, f) may be computed by
some Turing machine which is given Ay and Ay as input.

Theorem 2. For each distinguishing function f and each L € f-DL, x(L, f) is
a characteristic sample of L.

Proof. Consider an arbitrary language L' € f-DL with x(L, f) C L’. Set A =
A(La f) = (Qa Ta 57 q0, QF) and A/ = A(L,a f) = (Qla Ta 6,7 Q(,)a Q/F)7 cf. Theorem 1.
We have to show L C L'. Therefore, we will prove:

(*) for all w € Pref(L),

q=0"(q0,w) = (w™'L', f(w)) = ((u(q)) "L, f(u(q)))-

(*) implies: If w € L, i.e., ¢y = §*(qo,w) is final state of A, then, since u(qs) €
X(L, f) C L, (u(qs)) 'L’ is an accepting state of the minimal automaton A(L’)
of L’. This means that (u(gs) L', f(u(qr))) is an accepting state of A’, i.e.,
w € L', since f(w) = f(u(q)). Hence, L is a minimal f-distinguishable language
containing x (L, f).

We prove (*) by induction over the length of the prefix w we have to consider.
If |w| = 0, then w = u(go) = A\. Hence, (*) is trivially verified.
We assume that (*) holds for all w € T<"*1 n > 0. We discuss the case where
weT" aeT and wa € Pref(L). Since w € Pref(L), the induction hypothe-
sis yields (w'I, £(q)) = ((u(q)-'L', f(q), where g = 6"(qo,w) and f(w) =
f(q) = f(u(q)). Therefore, (wa) 'L’ = (u(q)a) L' and f(wa) = f(u(q)a), since
f is a distinguishing function. Consider ¢’ = §(q,a) = §*(qo, wa).

Since {u(q)av(q'),u(q')v(¢")} € x(L,f) € L and f(u(g)a) = f(u(q)) =
fwa), 8" (g}, u(q)a) = (g}, u(q")) due to Remark 6 and, hence, we can con-
clude that (u(q’)) 'L’ = (u(q)a)~L’. The induction of (*) is finished. 0

5 Inference algorithm

We sketch an algorithm which receives an input sample set I = {wy,...,wy}
(a finite subset of the language L € f-DL to be identified) and finds a minimal
language L’ € f-DL which contains I, . In order to specify that algorithm more
precisely, we need the following notions.

The prefix tree acceptor PTA(I}) = (Q,T, 9,90, Q) of a finite sample set
Iy ={wy,...,wp} CT* is a deterministic finite automaton which is defined as
follows: @ = Pref(Iy), gqo = A, Qr = I+ and 6(v,a) = va for va € Pref(1}).

Identification of Function Distinguishable Languages 125

A simple merging state inference algorithm f-Ident for f-DL now starts with
the automaton Ay which is the stripped subautomaton of PTA(I;) x As" and
merges two arbitrarily chosen states ¢ and ¢’ which cause a conflict to the first or
the third of the requirements for f-distinguishing automata. (One can show that
the second requirement won’t be violated ever when starting the merging process
with Ao which trivially satisfies that condition.) This yields an automaton Aj;.
Again, choose two conflicting states p, p’ and merge them to obtain an automaton
Ay and so forth, until one comes to an automaton A, which is f-distinguishable.
In this way, we get a chain of automata Ag, Ay, ..., A;. Speaking more formally,
each automaton A; in this chain can be interpreted as a quotient automaton of
Ap by the partition of the state set of Ay induced by the corresponding merging
operation. Observe that each A; is stripped, since Ag is stripped.

Completely analogous to [, Lemma 1], one can prove:

Lemma 3. Consider a distinguishing function f and some L € f-DL. Let I, C
L C T* be a finite sample. Let w be the partition of states of Ay (the stripped
subautomaton of PTA(Iy) x Ay) given by: (qu, f(q1)), (g2, f(g2)) belong to the
same block iff ¢y 'L = q; 'L and f(q1) = f(gz2).” Then, the quotient automaton
7~ YAy is isomorphic to a subautomaton of A(L, f). O

Theorem 3. Let f be a distinguishing function. Consider a chain of automata
Ag, Ay, ..., Ay obtained by applying the sketched algorithm f-Ident on input
sample I, where Ay is the stripped subautomaton of PTA(Iy) x Ay. Then, we
have:

1. L(Ap) C L(A;) C--- C L(A).

2. Ay is f-distinguishable and stripped.

3. The partition m; of the state set of Ag corresponding to A; is the finest
partition 7 of the state set of Ag such that the quotient automaton w—1Aq is
f-distinguishable.

Proof. 1. is clear, since f-Ident is a merging states algorithm.

2. follows almost by definition.

3. can be shown by induction, proving that each 7; corresponding to A; refines .
Since this proof is analogous to [1, Lemma 25|, we omit it; see also [6, Propriété
1.1]. O

Theorem 4. In the notations of the previous theorem, L(A:) is a minimal f-
distinguishable language containing I .

Proof. The previous theorem states that L(A;) € f-DL and Iy = L(Ap) C
L(A;). Consider now an arbitrary language L containing I,. We consider the
quotient automaton 71 Ag defined in Lemma 3. This Lemma shows that

L(z~'Ay) € L = L(A(L, f)).

* Of course, this automaton is equivalent to PTA(I4).
® Note that states of PTA(I) are words over T.

126 Henning Fernau

By Lemma 1, 7=tAg is f-distinguishable, because A(L, f) is f-distinguishable
due to Theorem 1. Theorem 3 yields that m; refines 7, so that

L(At) = L(T(;lA()) Q L(7T_1A()) =L. 0O

Theorem 5. If L € f-DL is enumerated as input to the algorithm f-Ident, it
converges to the f-canonical automaton A(L, f).

Proof. At some point N of the enumeration process, the characteristic sample
x(L, f) will have been given to f-Ident. By combining Theorems 2 and 4, for
all n > N, and all automata A, output by f-Ident, we have L(4,) = L. The
argument of Theorem 4 shows that each A4, (with n > N) is isomorphic to a
subautomaton of A(L, f) generating L = L(A(L, f)). Since each A, is stripped,
it must be isomorphic to A(L, f) for n > N. O

We refrain from giving details of particular cases of f-Ident, since good
implementations of f-Ident will depend on the choice of the distinguishing
function f. We refer to [1,10,18] for several specific algorithms, including their
time analysis. We only remark that the performance of the general algorithm
f-Ident sketched above depends on the size of Ay (since the characteristic sam-
ple x(L, f) we defined above depends on this size) and is in this sense “scalable”,
since “larger” Ay permit larger language families to be identified. More precisely:

Proposition 1. Let f and g be distinguishing functions. If Ay is a homomorphic
image of Ay, then f-DL C g-DL.

Proof. In order to show the inclusion, we can restrict our argument to the f- (g)-
canonical automata. Let L € f-DL. Consider A(L, f). Recall that A(L, f) is the
stripped version of the product automaton A(L)x Ay, where also L(A(L)x Ay) =
L. Now, it is easy to extend the assumed automata homomorphism mapping
Ay onto Ay to a homomorphism mapping A(L) x Ay onto A(L) x Ay, ie.,
L =L(A(L) x A,) € g-DL. O

We will discuss special cases below.

Remark 7. As regards the time complexity, let us mention briefly that the
f-Ident algorithm can be implemented to run in time O(a(|F|n)|F|n), where
« is the inverse Ackermann function and n is the total length of all words in Iy
from language L, when L is the language presented to the learner for f-DL.

Proof. This observation follows from the fact that f-Ident can be implemented
similarly to the algorithm for O-reversible languages exhibited by Angluin [1].
Moreover, her time analysis carries over to our situation. a

Observe that this leads to an O((a(|T|*n)|T|¥n) algorithm for k-reversible
languages, even if we output the deterministic minimal automaton as canonical
object (instead of A(L, f) as would be done by our algorithm), since A(L) can be
obtained by A(L, f) by computationally simple projection. On the other hand,

Identification of Function Distinguishable Languages 127

Angluin [1] presented an O(kn?) algorithm for the inference of k-reversible lan-
guages. When k is small compared to n (as it would be in realistic applications,
where k could be considered even as a fixed parameter), our algorithm would
turn out to be superior compared with Angluin’s. Recall that this feature is
prominent in so-called fixed-parameter algorithms, see [3,4,10].

We mention that f-Ident can be easily converted into an incremental algo-
rithm, as sketched in the case of reversible languages in [1].

6 Special cases

Already in Section 2.2, we gave several examples of distinguishing functions,
which, due to the results in the preceding sections, lead to identifiable language
classes. We will discuss these and other distinguishing functions and the corre-
sponding classes here.

In [10], we claimed the inferrability of the k-terminal distinguishable lan-
guages without proof. This fact follows from our general results together with
the following lemma.

Lemma 4. For all k € N, Tery is a distinguishing function.

Proof. Consider three strings u,w,z € T* with Tery(w) = Terg(z). It is clear
that 7 (w) = 7k (z) implies 7, (wu) = 7 (zu) and that op(w) = or(z) implies
ox(wu) = or(zu). Now, if pk(w) = ur(z) and ox(w) = ok(z), then consider
some word = € pr(wu). If € pg(w), then clearly = € ug(z) C pr(zu). If
x € pg(u), then trivially @ € pp(zu). The only remaining case is @ = zyxo,
r1 # A and xo # A, where z7 is a suffix of w and z9 is a prefix of u. Hence,
x1 is also a suffix of 7 (w), i.e., 21 is also a suffix of z. Therefore, z € p(zu).
This yields pr(wu) C uk(zu). Interchanging the roles of w and z, we obtain
pk(wu) = pg(zu) as desired. O

This leads to an O((a(|T|2k2|T|kn)|T|2k2|T|kn) algorithm for k-terminal dis-
tinguishable languages, where n is the total length of all words in a positive
sample I .

We can also supply a proof of the following theorem stated in [10] in this
place:

Theorem 6 (Hierarchy theorem). Vk > 0 : Tery-DL C Tergi1-DL.

Proof. As indicated in [10], {a¥, a**1} is in Terj1-DL but not in Tery-DL. We
like to apply Proposition 1 in order to prove the inclusion. To this end, we
have to show how to map states of ATerHl, which are of the form (z,Y, z) with

2,2 € T<F*t2 and Y C 2Tk+2, into states of Arer, . This can be done by

(@,Y,2) = (mi(@), (| me(®) U (@) U e (2), 05 (2)).
yey

The reader may verify that this mapping is indeed a homomorphism. a

128 Henning Fernau

Since every k-testable language (in the strict sense) [12] is easily seen to be
generatable by a general subautomaton of the Tery-distinguishable automaton
Ater, , it follows that every k-testable language is in Ter-DL due to Lemma 1.

Ruiz and Garcia discussed another family of language classes which they
called k-piecewise testable languages [21] and showed that each member of this
family is identifiable. In the following, we show how these ideas can be adapted
in order to create identifiable language classes within our setting.

Given z,y € T*, we say that £ = a1as...ay, witha; € T, i =1,...,n,is a
sparse subword of y iff y € T*{a1}T*{a2}T* ... T*{a,}T™*. We will write x|y in
this case. -|- is also called division (ordering). Let Ap(w) = {x € T<F | z|w}.

Without proof, we state:

Lemma 5. For all k € N, Ay is a distinguishing function. O

Observe in this place that w +— {z € T* | zJw} is not a distinguishing
function in general.

Completely analogous to the hierarchy theorem shown for Tery-DL, one can
prove:

Theorem 7 (Hierarchy theorem). Vk > 0: Ap-DL C Ag41-DL. m|
Another related distinguishing function is
w— (pip(w), {z € T<* | zjw}, op(w)).

Finally, Ruiz, Espana and Garcia [20] discussed a generalization of k-testable
languages, where they allowed to count the multiplicities of (forbidden) subwords
defining the so-called threshold testable languages. This counting feature can be
incorporated both in Terg, as well as in A, in order to obtain other possibly
interesting classes of distinguishing functions. For reasons of space, we only dis-
cuss how to generalize Ay and leave all the details to the reader. Let #(z,y) be
the number of positions at which = occurs as sparse subword of y. Then define,
for every k, ¢ € N:

Apo(w) = {(z, #(x,w)) | x € T<F, #(x,w) < £}
Again, we state without proof.
Lemma 6. For all k,0 € N, Ay, is a distinguishing function. O

This section might have convinced the reader that there are indeed a number
of interesting language classes which are shown to be identifiable by using our
setting.

7 Discussion

We have proposed a large collection of families of languages, each of which is
identifiable in the limit from positive samples, hence extending previous works.

Identification of Function Distinguishable Languages 129

As the main technical contribution of the paper, we see the introduction of new
canonical objects, namely the automata A(L, f). This also simplifies correctness
proofs of inference algorithms for k-reversible languages, k > 0, to some extent.
It seems to be interesting to study these canonical automata also in the search-
space framework of Dupont and Miclet [5,7,0].

We feel that deterministic methods (such as the one proposed in this paper)
are quite important for practical applications, since they could be understood
more precisely than mere heuristics, so that one can prove certain properties
about the algorithms. Moreover, the approach of this paper allows one to make
the bias (which each identification algorithm necessarily has) explicit and trans-
parent to the user: The bias consists in (1) the restriction to regular languages
and (2) the choice of a particular distinguishing function f.

We will provide a publicly accessible prototype learning algorithm for (each
of the families) f-DL in the future. A user can then firstly look for an appro-
priate f by making learning experiments with typical languages he expects to
be representative for the languages in his particular application. After this “bias
training phase”, the user may then use the such-chosen learning algorithm (or
better, an improved implementation for the specific choice of f) for his actual
application.

If the application suggests that the languages which are to be inferred are
non-regular, methods such as those suggested in [17] can be transferred. This is
done most easily by using the concept of control languages as undertaken in [8,9]
or [23, Section 4] or by using the related concept of permutations, see [11].

Acknowledgments: We gratefully acknowledge discussions with J. Alber and
J. M. Sempere. Moreover, the comments of the unknown referees were very
helpful for improving the paper.

References

1. D. Angluin. Inference of reversible languages. Journal of the Association for
Computing Machinery, 29(3):741-765, 1982. 116, 117, 119, 125, 126, 127

2. D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87-106, 1987. 116, 117

3. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999. 127

4. R. G. Downey, M. R. Fellows, and U. Stege. Parameterized complexity: A frame-
work for systematically confronting computational intractability. In Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future,
volume 49 of AMS-DIMACS, pages 49-99. AMS Press, 1999. 127

5. P. Dupont. Incremental regular inference. In L. Miclet and C. de la Higuera, edi-
tors, Proceedings of the Third International Colloquium on Grammatical Inference
(ICGI-96): Learning Syntax from Sentences, volume 1147 of LNCS/LNAI, pages
222-237. Springer, 1996. 129

6. P. Dupont and L. Miclet. Inférence grammaticale réguliere: fondements théoriques
et principaux algorithmes. Technical Report RR-3449, INRIA, 1998. 125, 129

7. P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular infer-
ence? In R. C. Carrasco and J. Oncina, editors, Proceedings of the Second Inter-
national Colloquium on Grammatical Inference (ICGI-94): Grammatical Inference
and Applications, volume 862 of LNCS/LNAI, pages 25-37. Springer, 1994. 129

130

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Henning Fernau

H. Fernau. Learning of terminal distinguishable languages. Technical Report
WSI-99-23, Universitdt Tiibingen (Germany), Wilhelm-Schickard-Institut fiir In-
formatik, 1999. Short version published in the proceedings of AMAI 2000, see
http://rutcor.rutgers.edu/ amai/AcceptedCont.htm. 116, 129, 130

H. Fernau. Identifying terminal distinguishable languages. Submitted revised
version of [3]. 119, 120, 129

H. Fernau. k-gram extensions of terminal distinguishable languages. In Proc.
International Conference on Pattern Recognition. IEEE/IAPR, 2000. To appear.
116, 118, 119, 126, 127

H. Fernau and J. M. Sempere. Permutations and control sets for learning non-
regular language families. In Proc. International Conference on Grammatical In-
ference. Springer, 2000. To appear. 129

P. Garcia and E. Vidal. Inference of k-testable languages in the strict sense and ap-
plications to syntactic pattern recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:920-925, 1990. 128

E. M. Gold. Language identification in the limit. Information and Control (now
Information and Computation), 10:447-474, 1967. 116, 120

J. Gregor. Data-driven inductive inference of finite-state automata. International
Journal of Pattern Recognition and Artificial Intelligence, 8(1):305-322, 1994. 117
S. Jain, D. Osherson, J. S. Royer, and A. Sharma. Systems That Learn. MIT Press,
2nd edition, 1999. 123

R. Niedermeier. Some prospects for efficient fixed parameter algorithms (invited
paper). In B. Rovan, editor, SOFSEM’98, volume 1521 of LNCS, pages 168-185.
Springer, 1998. 127

V. Radhakrishnan. Grammatical Inference from Positive Data: An Effective Inte-
grated Approach. PhD thesis, Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay (India), 1987. 116, 117, 129

V. Radhakrishnan and G. Nagaraja. Inference of regular grammars via skeletons.
IEEE Transactions on Systems, Man and Cybernetics, 17(6):982-992, 1987. 116,
117, 118, 119, 126

P. Rossmanith. Learning from random text. In O. Watanabe and T. Yokomori, ed-
itors, Algorithmic Learning Theory (ALT’99), volume 1720 of LNCS/LNAI, pages
132-144. Springer, 1999. 116

J. Ruiz, S. Espafia and P. Garcfa. Locally threshold testable languages in strict
sense: application to the inference problem In V. Honavar and G. Slutski, edi-
tors, Proceedings of the Fourth International Colloquium on Grammatical Inference
(ICGI-98), volume 1433 of LNCS/LNAI, pages 150-161. Springer, 1998. 128

J. Ruiz and P. Garcia. Learning k-piecewise testable languages from positive data.
In L. Miclet and C. de la Higuera, editors, Proceedings of the Third International
Colloquium on Grammatical Inference (ICGI-96): Learning Syntax from Sentences,
volume 1147 of LNCS/LNAI, pages 203—210. Springer, 1996. 128

J. M. Sempere and G. Nagaraja. Learning a subclass of linear languages from pos-
itive structural information. In V. Honavar and G. Slutski, editors, Proceedings of
the Fourth International Colloguium on Grammatical Inference (ICGI-98), volume
1433 of LNCS/LNAI, pages 162-174. Springer, 1998. 121

Y. Takada. A hierarchy of language families learnable by regular language learning.
Information and Computation, 123:138-145, 1995. 129

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134—
1142, 1984. 116

R. Wiehagen. Identification of formal languages. In Mathematical Foundations of
Computer Science (MFCS’77), volume 53 of LNCS, pages 571-579. Springer, 1977.
116

A Probabilistic Identification Result

Eric McCreath

Basser Department of Computer Science
University of Sydney NSW 2006 Australia
ericm@cs.usyd.edu.au

Abstract. The approach used to assess a learning algorithm should
reflect the type of environment we place the algorithm within. Often
learners are given examples that both contain noise and are governed by
a particular distribution. Hence, probabilistic identification in the limit
is an appropriate tool for assessing such learners. In this paper we intro-
duce an exact notion of probabilistic identification in the limit based on
Laird’s thesis. The strategy presented incorporates a variety of learning
situations including: noise free positive examples, noisy independently
generated examples, and noise free with both positive and negative ex-
amples. This yields a useful technique for assessing the effectiveness of
a learner when training data is governed by a distribution and is possi-
bly noisy. An attempt has been made to give a preliminary theoretical
evaluation of the Q-heuristic. To this end, we have shown that a learner
using the @-heuristic stochastically learns in the limit any finite class of
concepts, even when noise is present in the training examples. This result
is encouraging, because with enough data, there is the expectation that
the learner will induce a correct hypothesis. The proof of this result is
extended to show that a restricted infinite class of concepts can also be
stochastically learnt in the limit. The restriction requires the hypothesis
space to be g-sparse.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 131-141, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

132 Eric McCreath

1 Introduction

The type of training examples provided to a learner has a significant effect on
the class of concepts that may be learnt. For example, in the identification in
the limit framework, by restricting the training examples to positive only exam-
ples we severely restrict the class of concepts that may be identified. However,
by attaching a distribution to the instance space, providing the positive exam-
ples to the learner according to this distribution, the class of concepts that may
be learnt is extended [12]. Also, the environment in which we assess a learning
system should reflect the environment in which we expect the learner to op-
erate. We often expect learners to operate in domains that both contain noise
and training examples which are governed by some distribution. This provides
a strong motivation for probabilistic identification in the limit, introduced by
Laird [7,8], where training examples are possibly noisy. Laird’s approach, al-
though embracing noise in the training examples, assumes both positive and
negative examples are provided to the learner. Whereas, the approach taken in
this paper uses an oracle to determine if an example will be positive or negative.
This generalizes the type of training examples given to a learner, permitting
probabilistic identification results to encompass a larger variety of learning situ-
ations. The stochastic process used to generate example texts and the definition
of probabilistic identification is presented in section 2.

The @ heuristic was designed for an ILP system, LIME. This system learns
from possibly noisy data where the number of positive and negative training ex-
amples are fixed and independent from the concept provided[11, 10]. The heuris-
tic simply uses Bayes rule! given the assumptions regarding the training exam-
ples. We show that a learner which employs the @) heuristic will stochastically
learn in the limit:

— any finite class of concepts, and
— a restricted infinite classes of concepts.

Of course, a finite class of concepts is trivially learnable from positive only data
in the identification in the limit setting [6]. Hence, it is also learnable in the
stochastic identification in the limit setting. What keeps our result from being
trivial is the presence of noise in the data. Having presented this result, we
explore conditions under which the result can be extended to an infinite class of
concepts. The proof techniques for the infinite case, which introduces the notion
of g-sparse hypothises spaces, builds on that of the finite case. These results are
presented in section 3.

Section 4 contains two example concepts classes which may be shown to be
g-sparse. We finally discuss possible future direction in section 5.

2 Probabilistic Identification in the Limit

Probabilistic identification in the limit extends identification in the limit by
replacing the teacher that presents all the examples to the learner with a teacher

P(E|H)P(H

A Probabilistic Identification Result 133

that uses a distribution to present examples to the learner. The criterion of
success is correspondingly altered requiring that with probability 1 the learner
induces a correct hypothesis all but finitely many times.

Let X be the instance space and Dx be a probability measure over X. Note,
Dx is a mapping from 2% to [0,1] and Dy ({z}) is simply written Dx(z). We
also assume X to be a countable set. Recall that members of 2% are concepts.
Let C be a class of concepts. The probability cover of a concept ¢, defined 6(c),
is D)((C) = ZEGCD)((QZ).

The error or difference between two concepts ¢; and ¢s with respect to the
probability measure Dx is defined as error(cy, ca) = 6(cy Acs). By using error to
evaluate a hypothesis the hypothesis only needs to be correct on instances which
have nonzero probability in the instance space distribution. This is reasonable
as the learner will never be presented with an instance with zero probability.

We let E = X x {Pos, Neg} be the set of all labelled instances of the instance
space X. We usually refer to labelled instances as examples. An example text
E € E* is an infinite sequence of examples. The learner conjectures a hypothesis
from an initial finite sequence of E. This initial finite sequence of E of length
m is denoted E[m]. We let SEQ denote the set of all initial finite sequences,
{EIm]|E € E® Am € N}.

Let h be a hypothesis. In the present work, h is a computer program. The
extension of a hypothesis h, denoted ext(h), is the concept which h represents. A
hypothesis space is a sequence (usually infinite) of hypothesis. We assume that
the hypothesis space H under consideration is enumerable. Let hqg, hi,... be an
enumeration of H. We further assume that H is uniformly decidable, i.e., there
exists a computable function f: N x X — {0, 1} defined below:

fliz) = {1 if x € ext(h;),

0 otherwise.

We say that a hypothesis space H is complete with respect to a concept class
C if for each ¢ € C, there is a hypothesis h in the space H such that ¢ = ext(h).

We define a learner M to be a computable machine that implements a map-
ping from SEQ into H.

We also assume the learner is able to compute #(ezt(h)) for any h in the
hypothesis space H. Note that such a capability is unlikely to be available to
any computable learner, however, 8(ezt(h)) may always be estimated and its
exact value is not critical to induce the hypothesis with the largest Q-value?.

Definition 1 (Convergence). Learner M converges to hypothesis h on E just
in case for all but finitely many m € N, M (E[m]) = h. This is denoted M (E)]
= h.

A stochastic process GEN is used to generate these example texts. This
process may be formulated in a variety of ways depending on the kind of tests
against which the learner is to be benchmarked. The example texts generated

2 Note that, the Q-value is the value use to compare competing hypotheses.

134 Eric McCreath

will reflect the target concept, although it may not be an exact or complete
representation of the target concept. As the text may contain examples which
have opposite labelling to that which would reflect the concept. Also, there is
no explicit requirement that the text contain a complete set of instances.

We now introduce a general stochastic process for generating example texts,
this process is denoted GENaP’M”. The parameters (i, itn) governs the amount
of noise in the texts generated. p, gives the level of noise in the positive exam-
ples and correspondingly i, for the negative examples. In most cases p, = pn,
however, it is useful to allow these parameters to be different in some cases. By
setting p, = p, = 0 the process will generate noise free example texts. The
parameter O € {Pos, Neg}® is an oracle which determines which elements will
be positive and negative in the sequence generated by GEN&WM) prior to any
instance being selected. The n’th element in the oracle O is denoted O(n). By
using an oracle we may model a variety of situations. For example, the oracle
may determine all examples in the example text to be negative, hence we will
model learning from only negative examples. We show the stochastic convergence
results for any oracle, thus proving the result for a variety of situations. We may
also place a probability measure over {Pos, Neg}® and assume O is stochasti-
cally generated by such a measure. As the stochastic learning result is shown for
any O € {Pos, Neg}® the result will be also true for an oracle generated by any
stochastic process.

The algorithm for GEN(%,,,;L")(C’ X, Dx) works as follows. In each cycle of

the main loop the next example in the example text is generated. The oracle O
is used to determine if the next example will be positive or negative. If the oracle
decides that the next example will be positive, the following process is used: a
biased coin is flipped where the probability of the coin coming up “Heads” is p,
and “Tails” is 1— pup; if the coin comes up “Heads” then any instance is randomly
selected from X using D x and output as a positive example, if the coin is “Tails”
then any instance is randomly selected from c using the distribution J§ where:

0 otherwise.

Jo(a) = {Dx(a;)/e(c) if 7 € c,

A similar process is used if the oracle decides that the next example will be
negative. This algorithm generates a text which reflects the concept ¢, where the
sign of each example in the text matches the sign of the corresponding element
in O and the parameters (up, it,,) determine the levels of noise introduced into
the example text.

We now calculate the probability measure over E for each example generated

by GEN?M Jn)” There are two possible probability measures an example may

have, either G or G~. The n’th element of the example text will have probability
measure G if O(n) = Pos, otherwise it will have probability measure G~ when
O(n) = Neg.

A Probabilistic Identification Result 135

So when the oracle O determines the n’th example to be labelled “Pos”, that
is O(n) = Pos, example (x, s) is governed by:

Gt ({z,8) = {,UpDX(l") + (1 = pp)(J%(z)) if s = Pos,
’ 0 if s = Neg.

Correspondingly, for the examples where O(n) = Neg:

. inDx (@) + (1=) (J5 (2)) if 5 = Neg,
G ((z,s) = * e
0 if s = Pos.
As Dx, J%, and J§ are probability measures on X it is straightforward to
show that G™ and G~ are probability measures on E.
Note G*(E) = 1 and G~ (E) = 1. These measures are used to define the

probability measure ProbGEN? [(e.X,Dx) OB the o-field F C 2E”) | where

F is the o-field generated from the prefix sets of 2E7). Note that for every
prefix set B, = {E € E®|oc = El[|o|]} where 0 = (eg,e1,...,€e,) we have

PrObGEN?up,un)(CaX7DX)(B”) = 1—In<|f7| f(en, O(n)), where

F(z.5),0) = {Gt((x,s)) ?f o = Pos,
G~ ((z,s)) if o = Neg.
We refer the reader to Measure Theory and Probability by Adam and Guillemin

[1] or Probability and Measure by Billingsley [3] for further information on mea-

sure theory.
Using GEN?}LP, n) provides a flexible way of modelling different forms of

training data. We now provide a list of common models for training data and
show how these are specializations of GENap,un)‘

Noise free, positive examples: If we set y, = p, = 0 and set O = (Pos, Pos, Pos, .. .)
the training data will be noise free and positive. The distribution of this train-
ing data will reflect a normalized version of the instance space distribution,
where elements outside the target concept have probability zero of appearing
in a text. This is identical to the assumption about the training data used
by Montagna and Simi [12] who showed that whatever may be learnt in the
limit from both positive and negative data may also be stochastically learnt
in the limit from only positive data. This result assumes Dx is approxi-
mately computable. This is also similar to the model used by Angluin [2]
when she considered TXTEX-identification. Angluin allows a null or empty
element, denoted *, to be part of the text, to facilitate modelling a text for
the empty language.

Noisy, independently generated examples: Laird’s 7, 8] classification noise process
assumes that instances are chosen according to some distribution and then
correctly labelled according to the target concept. After this a demon with
probability £ flips the class label from positive to negative or from negative to

136 Eric McCreath

positive, thereby creating noise in the training data®. This process generates
an example text where each example is independent and has the following
distribution:

(1-¢Dx(z) if s=PosAze€ec,

EDx(x) if s=Poshz e,

EDx(x) if s=NegAz€ec,
(1-¢Dx(z) ifs=NegAz¢ec.

Praira((z, 5)) =

Now let us see how this distribution can be modelled in our framework. We
now place a probability measure over {Pos, Neg}* such that each element
is the sequence is independent and is “Pos” with probability w and “Neg”
with probability 1 —w. We denote an oracle produced by such a distribution
Oy-

Now, each element in the example text produced by GEN%; i) will be
independent and have the following distribution:

w(py + (1 — pp)/0(c))Dx () if s=PosAzx € c,
P((z,s)) = wpy Dx (z) if s=PosAz ¢ c,
) (= w)pn Dx () if s=NegAzx € e,

(1= w)(pn + (1= pn) /(1 = 0(c))) Dx () if s =NegAz ¢Zc.

Now, let w = 6(c) +&—20(c)¢, pp = m, and p, = m.

Then the distribution for each example in the example text generated by

GENZ;‘; Ly Will be identical to Praira. It follows, their probability measures
over E* will also be identical. Hence, by showing a result for stochastic
learning with GENap’M) we correspondingly show the result for Laird’s
model of training data.

Noise free, with both positive and negative examples: Learning with both positive
and negative examples is the same as EX-identification where the functions
in question have range restricted to either “Pos” or “Neg”. Angluin [2] when
considering EX-identification in a probabilistic setting assumes that each
example is independent in the text and the probability of an example ap-
pearing is based on a distribution from the range of the function. This gives

us the following distribution over the examples:

Dx(z) if s=PosAz€e,
0 if s=PosAz e,
0 if s=NegAzx€c,
Dx(z) if s=NegAzx¢dec.

P((z,s)) =

If the oracle Oy, as defined in the previous model, where w = 6(c) and
tp = pn = 0, then GEN%’ o) gives the same distribution over each of the
generated examples in the text.

3 Laird [7] uses p for the noise parameter, however, as it different to the noise param-
eter used here, we use £ to refer to Laird’s noise parameter.

A Probabilistic Identification Result 137

By showing a learner to stochastically identify a class of concepts C' when
examples are provided by GEN?HW#"), we also show that the learner will stochas-
tically identify C' when examples are provided by distributions used in the other
models.

Definition 2, of probabilistic identification in the limit, is based on the defi-

nition given in Laird’s thesis [7, 8].

Definition 2 (Probabilistic identification in the limit). Given an instance
space X and a probability measure Dx over X. A learner M is said to identify
the class of concepts C stochastically in the limit, with respect to a hypothesis
space H, if and only if

(a) examples are provided by GEN, and
(b) (Vce) ProbGEN(C,X,DX){E € E®|M(E)] = h A error(ezt(h),c) = 0} =1.

This setting has the expected property that any subset of a class that is
stochastically learnable in the limit is also stochastically learnable in the limit
with respect to the same hypothesis space.

Laird [7] shows that any class of concepts that has a recursively enumerable
set of hypotheses may be stochastically identified in the limit.* This assumes
both positive and negative examples are presented to the learner according to the
distribution. This result is then extended by Laird to include noise in the training
examples. Both the Borel-Cantelli® and Hoeffding’s probability inequality [5],
used in the proofs by Laird, are also central to the results given in this paper.

3 Probabilistic Identification with the @-heuristic

Let m be the total number of examples presented to the learner, so m = n + p,
where p is the number of positive examples and n is the number of negative
examples. Let GEN?M’M) generate the example text E. The learner M, given
initial sequence E[m] induces the hypothesis M (E[m]).

The order of presentation of examples, the sign of examples, and the propor-
tion of positive and negative examples is dependent on the choice of oracle O.
Since these aspects of the example presentation are not crucial for the learning
algorithm, we assume that the learner is provided with a multiset of positive
examples (of cardinality p) a multiset of negative examples (of cardinality n).

The algorithm simply works by choosing the hypothesis with the maximum
@ value 7 given the current examples. In general there may be a set of hypothe-
ses with equal @ values. To stop the algorithm alternating between them, the

6

1 Note that, if hypotheses are total Turing programs then a recursively enumerable
set of hypotheses is the same as a uniform recursive set of hypotheses.

5 The reader is directed to an introductory text on measure theory such as, Measure
Theory and Probability [1] for more information.

% The notation argmax, . ;Q(h) denotes the set {h € H | (Vh' € H) Q(h) > Q(K))}.

" Qo (h) = 1g (P(h)+|TP, | 1g 7kt + €) +ITNo |1g (=55 + €) +HIFPNG | Ig(e)
where TP,, TN,, and FPN,, are respectively the true positive, true negatives, and

138 Eric McCreath

hypothesis with the minimum index® is chosen. If this minimum index selection
is removed then the algorithm will still learn stochastically in the limit, although
only in the behaviourally correct sense. Note that the algorithm is computable
as it only must consider a finite initial portion of the possibly infinite hypothesis
space [9, proposition 4.3.2].

Input :
An indexed hypothesis space H.
A prior probability distribution over H.
A function 6 for evaluating the theta value of a hypothesis.
A sequence o = E[m] of m examples from the example text E.
The noise parameter € € [0, 1) such that p, < e and p, <e.
Output :
A hypothesis h.
h := minindex(argmax, ¢ y Qo (h))
output h

Algorithm 1: Stochastic Identification using the @ heuristic

3.1 A finite concept class

Theorem 1. Let C be any finite concept class and let H be any hypothesis space
which is complete for C. Then for any noise parameter €, there exists a learning
algorithm that stochastically identifies C in the limit with respect to H when
examples are provided by GEN&F’#H) for any oracle O and any p, < € and
Hn S €.

Proof. Due to space limitations we only briefly outline the proof here, a full
version may be obtained in the authors thesis [9]. The proof compares h;, a
hypothesis that correctly classifies the target concept, with hs, a hypothesis
that is in error. The value of Q(h:) — Q(hs) is partitioned into three parts:
a fixed constant, a sum of a list of random variables each corresponding to a
positive example, and a sum of a list of random variables each corresponding to
a negative example. The expected value for each of these random variables is
shown to be positive. Assuming that the sum of these random variable is at least
half the expected sum, we will have Q(h:) > @Q(hs) at some point, even when the
fixed constant is negative. Applying Hoeffding’s inequality, we compute a bound
on the failure of this assumption. This bound is then used in conjunction with
the Borel-Cantelli lemma to show that the class of concepts can be stochastically
identified in the limit. O

false negatives or positives where the initial sequence is evaluated using hypothesis
h.

8 The notation minindex(S) denotes the hypothesis h € S such that (VA € S —
{h}) h < I/, where < is a total ordering on H.

A Probabilistic Identification Result 139

3.2 A restricted infinite concept class

The problem with extending the above result to an infinite concept class is when
the hypotheses, with respect to their priors, converge on the target concept too
quickly. When this occurs over an infinite set of concepts the bound on inducing
an incorrect hypothesis is not finite. To address this problem a restriction is
placed on the rate any hypothesis may be converged on.

Definition 3 (g-sparse with respect to a concept). Let g : N = R. Let ¢
be a concept. A hypothesis space, H = {h;|i € N}, is said to be g-sparse with
respect to concept c if there exists m. € N and w, € R such that for all j > m.,
we have:

error(c, ext(h;)) # 0 = error(c, ext(h;)) > w.g(j).

Definition 4 (g-sparse). A hypothesis space H is said to be g-sparse if H is
g-sparse with respect to concepts (), the instance space X, and ext(h;) for all
h; € H.

Theorem 2. Let C be any concept class and H be any hypothesis space which
is complete for C. Let € € [0,1) be the noise parameter. Assuming H is g-sparse
where g(i) = Z% for a < 1, there exists an algorithm that stochastically identifies
C in the limit with respect to H when examples are provided by GEN<O;LP,M,[) for
any oracle O and any p, < € and p, < €.

Proof. Similarly we only briefly outline the proof here, see [9] for the full version.
This proof extends the previous proof. The learner once again uses Algorithm 1.

Given the g-spares constraint we may apply Hoeffdings inequality to find
a bound on the probability of inducing an incorrect hypothesis. This bound is
then used in conjunction with the Borel-Cantelli lemma to show that the class
of concepts can be stochastically identified in the limit. O

4 Example Concept Classes

The learnability results presented in the previous two sections are interesting
because our model incorporates noise in the data and a stochastic criterion of
success. We feel that our approach is more realistic because although the classes
discussed previously are learnable in the limit (in the traditional Gold [4] sense),
they are not learnable in the Gold setting if noise is present. We next consider a
class that is not learnable in the limit from positive only data in Gold’s setting,
but is learnable in our stochastic setting from only positive data even in the
presence of noise.

The proofs of Propositions 1 and 2 work by showing that the hypothesis
spaces in question are g-sparse with respect to a instance space distribution and
then applying Theorem 2. The reader is directed to [9] for these proofs.

140 Eric McCreath

Proposition 1. Let H = {hy, ho, h3,...} = {N,0, {1}, {2},{1,2},{3},{1,3},...}.

The concept class consisting of all the finite subsets of N together with N is
stochastically learnable in the limit with respect to H.°

The g-sparse constraint is not a strong restriction as most enumerations of a
hypotheses would generally not “target” a particular hypothesis “quickly”.

We now consider the classes of concepts that consists of the empty set, the set
of naturals and sets of the form {1,2,...,k}, this class is a subset of the class
shown to be stochastically learnable in the limit in the previous proposition,
hence, the class will also be stochastically learnable in the limit.'® However, we
include this result as it may be proved using a restricted hypothesis space and a
different instance space distribution which forms a tighter bound on the g-sparse
restriction, and hence a more difficult concept to learn.

Proposition 2. Let the instance space X be N. Let the instance space distribu-
tion Dx (z) = —3yz where sy is the normalizing constant. Let H = {hi,ha,h3,...}
{N,0,{1},{1,2},{1,2,3},{1,2,3,4},...}. The concept class consisting of N and
0 together with {{1,2,... ,k}|k € N} is stochastically learnable in the limit with
respect to H.

5 Discussion

The results of stochastic identification in the limit in this paper are preliminary.
An open question is whether these results could be extended to take into ac-
count complexity issues. This would give some idea of the the expected number
of training examples provided to the learner, before the correct hypothesis is
induced. In this case both the distribution of concepts presented to the learner
and the prior probability used become critical. Another open question is what
are the characteristics of g-sparse hypothesis spaces.

6 Acknowledgements

I thank Arun Sharma for his insight and advice. I also thank him for his en-
couragement to extend the initial finite result. I would also like to thank the
reviewers for their helpful comments.

References

1. M. Adams and V. Guillemin. Measure Theory and Probability. Birkhduser Boston,
1996.

2. D. Angluin. Identifying languages from stochastic examples. Technical Report
TR-614, University of Yale, 1988.

9 Since the data presentation could be guided by any oracle, this result holds for
positive only data, too.
10°See Proposition 7.1.1 of [9].

s w

10.

11.

12.

A Probabilistic Identification Result 141

P. Billingsley. Probability and Measure. John Wiley & Sons, 1995.

E. M. Gold. Language identification in the limit. Information and Control, 10:447—
474, 1967.

W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58:13-30, 1963.

S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems That Learn: An Introduc-
tion to Learning Theory. MIT Press, second edition edition, 1999.

P. Laird. Learning from Good Data and Bad. PhD thesis, Yale University, 1987.
P. Laird. Learning from Good and Bad Data. Kluwer Academic Publishers, Boston,
MA, 1988.

E. McCreath. Induction in First Order Logic from Noisy Training Ezamples and
Fized Example Set Sizes. PhD thesis, The University of New South Wales, 1999.
E. McCreath and A. Sharma. ILP with noise and fixed example size: A Bayesian
approach. In Fifteenth International Joint Conference on Artificial Intelligence,
volume 2, pages 1310-1315, 1997.

E. McCreath and A. Sharma. Lime: A system for learning relations. In The 9th
International Workshop on Algorithmic Learning Theory. Springer-Verlag, October
1998.

F. Montagna and G. Simi. Paradigms in measure theoretic learning and in infor-
mant learning. Unpublished Draft.

A New Framework for Discovering Knowledge
from Two-Dimensional Structured Data Using
Layout Formal Graph System

Tomoyuki Uchida', Yuko Itokawa', Takayoshi Shoudai?, Tetsuhiro Miyahara®,
and Yasuaki Nakamura!

! Faculty of Information Sciences, Hiroshima City University,
Hiroshima 731-3194, Japan
{uchida@cs,yuko@toc.cs,miyahara@its,nakamura@cs}.hiroshima-cu.ac. jp
2 Department of Informatics, Kyushu University 39, Kasuga 816-8580, Japan
shoudai@i.kyushu-u.ac.jp

Abstract. We present a new framework for discovering knowledge from
two-dimensional structured data by using Inductive Logic Programming.
Two-dimensional graph structured data such as image or map data are
widely used for representing relations and distances between various ob-
jects. First, we define a layout term graph suited for representing two-
dimensional graph structured data. A layout term graph is a pattern con-
sisting of variables and two-dimensional graph structures. Moreover, we
propose Layout Formal Graph System (LFGS) as a new logic program-
ming system having a layout term graph as a term. LFGS directly deals
with graphs having positional relations just like first order terms. Sec-
ond, we show that LFGS is more powerful than Layout Graph Grammar,
which is a generating system consisting of a context-free graph grammar
and positional relations. This indicates that LFGS has the richness and
advantage of representing knowledge about two-dimensional structured
data.

Finally, we design a knowledge discovery system, which uses LFGS as
a knowledge representation language and refutably inductive inference
as a learning method. In order to give a theoretical foundation of our
knowledge discovery system, we give the set of weakly reducing LFGS
programs which is a sufficiently large hypothesis space of LFGS programs
and show that the hypothesis space is refutably inferable from complete
data.

1 Introduction

The purpose of this paper is to give a framework for discovering knowledge from
two-dimensional graph structured data. A graph is one of the most common
abstract structures and is widely used for representing relations between various
data such as image, map, molecular, CAD or network data. In graph struc-
tures, a vertex represents an object, and an edge represents a relation between
objects but not a distance between them. In representing two-dimensional struc-
tured data such as image or map data, it is needed to represent two-dimensional

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 141-155, 2000.
© Springer-Verlag Berlin Heidelberg 2000

142 Tomoyuki Uchida et al.

Negative Examples

Positive Examples

rrrrrr

Knowledge Discovery System
for 2-D Structured Data

Hypothesis

P(EED) «—

=3

Fig. 1. A knowledge discovery system using LFGS

graph structured data with distances between objects and positional relations.
As methods of expressing knowledge for various data, logic program, decision di-
agram using ID3 algorithm [12], and association rules are known. Especially, for
graph structured data, Muggleton et al. produced the Inductive Logic Program-
ming system PROGOL and applied it to biochemical and chemical data [3,10].
For graph structured data, we have already designed and implemented a knowl-
edge discovery system KD-FGS [8,9]. The KD-FGS system uses Formal Graph
System (FGS) as a knowledge representation language and refutably inductive
inference as a learning method.

In [16], we presented a term graph as a hypergraph whose hyperedges are
regarded as variables. By adding positional relations with distances between
objects to the notion of a term graph, we define a layout term graph for repre-

Discovering Knowledge from 2-D Structured Data using LFGS 143

senting two-dimensional structured data. By using layout term graphs, we have
the advantage of solving the isomorphism problem of layout term graphs in poly-
nomial time. And we propose Layout Formal Graph System (LFGS) as a new
logic programming system which directly deals with layout term graphs instead
of first order terms. By comparing LFGS with Layout Graph Grammar (LGG)
[1], which is a generating system for two-dimensional graph structured data, we
show that the sets of graphs generated by LGG are also definable by LFGS.
This indicates that interesting sets of graphs such as the trees, the binary trees,
the series parallel graphs, the partial k-trees for a positive fixed integer k, the
maximal outerplanar graphs, and the complete graphs, are definable by LFGS.

From the above theoretical foundations, we can design a knowledge discovery
system as follows. By employing a matching algorithm for layout term graphs,
we can design various knowledge discovery systems, for example, a system based
on Minimum Description Length principle [13] such as SUBDUE System [2] and
a system whose hypotheses are association rules or decision diagrams over a
layout term graph. In this paper, we design a knowledge discovery system based
on Inductive Logic Programming in Fig. 1. Our system uses LFGS as a knowledge
representation language and refutably inductive inference as a learning method.
As inputs, our discovery system receives positive and negative examples about
two-dimensional structured data. As an output, the system produces an LFGS
program as a rule describing the given examples. In order to give a theoretical
foundation of our system, we give the set of weakly reducing LFGS programs
which is a sufficiently large hypothesis space of LFGS programs and show that
the hypothesis space is refutably inferable from complete data.

This paper is organized as follows. In Section 2, we define a layout term
graph as a pattern consisting of variables and positional relations in order to
represent two-dimensional structured data. And we introduce LFGS as a new
knowledge representation language suited for two-dimensional graph structured
data. In Section 3, we show that LFGS is more powerful than LGG. In Section
4, we design our knowledge discovery system by giving a framework of refutably
inductive inference of LFGS programs.

2 LFGS as a New Logic Programming System for
Two-Dimensional Structured Data

In this section, we define a layout term graph, which is a new knowledge repre-
sentation for two-dimensional structured data. And we present Layout Formal
Graph System (LFGS), which is a logic programming system having a layout
term graph as a term. This section gives a theoretical foundation for knowledge
discovery systems using a layout term graph as a pattern and other systems
using LFGS as a knowledge representation language.

Let X and A be finite alphabets and X an alphabet. An element in X,
AU {x,y} and X is called a vertex label, an edge label, and a wvariable label,
respectively. Assume that (XU AU {x,y}) N X = 0 and AN {x,y} = 0. Let
N be the set of non-negative integers and N = A — {0}. For a list or a set

144 Tomoyuki Uchida et al.

S, the number of elements in S is denoted by |S|. Let V, E and H be a finite
set, a subset of V' x A x V, and a multi-set of lists of distinct vertices in V,
respectively. An element in V', E and H is called a vertex, a directed edge (or
simply an edge), and a variable (or a hyperedge), respectively. For a variable h,
we denote the set of all elements in ko by V' (h) and V (H) denotes (J,; V (k). We
assume two functions, called rank and perm, for the variable label set X. The
first function rank:X — N1 assigns a positive integer for each variable label.
A positive integer rank(x) is called the rank of z. The second function perm
assigns a permutation over rank(z) elements for each variable label x € X.

That is, for a variable label x € X, perm(x) = (5(11) 5(22) g(zz) f(kk)>

is an operation which change the i-th element to the £(i)-th element for each
1 <i <k, where k = rank(x) and £ : {1,...,k} — {1,...,k} is a permutation.
Applying a permutation perm(zx) to a variable h = (v1,va,...,vx) is defined as
follows. h - perm(z) = (v1,v2,...,0%) - perm(x) = (Ve-1(1), Ve-1(2)5 - - - » Ve—1(k))-
Each variable h € H is labeled with a variable label in X whose rank is |h|.
Let F' be a subset of (VU H) x {x,y} x (V U H), whose elements are called
layout edges. For E and F', we allow multiple edges and multiple layout edges
but disallow self-loops. Let dist : I — N be a function which gives a distance
between two vertices, a vertex and a variable, or two variables. A layout edge
(u,x,v) (resp. (u,y,v)) means that the vertex u must be placed in the left
(resp. lower) side of the vertex v so that the distance between u and v is more
than dist((u,x,v)) in the x-direction (resp. dist((u,y,v)) in the y-direction).
Later we define a substitution which replaces variables with graphs. In order to
specify the positions of the resulting graphs after applying a substitution, we give
relations between a vertex and a variable, or two variables, in advance, by dist
and layout edges. A layout edge labeled with an edge label s € {x,y} is called
an s-edge. For an edge label s € {x,y}, an s-path is a sequence of layout edges
(u1,s,u2), (U2, 8,u3),. .., (Un, S, Uny1) such that u; # u; for 1 <i<j<mn-+1,
where each u; (1 <7 <n+1)isa vertex or a variable. If u; = u,41, the s-path
is called an s-cycle.

Definition 1. A 4-tuple ¢ = (V,E,H, F) is called a layout term graph if it
satisfies the following conditions.

(1) For any two distinct vertices in V', there exist an x-path and a y-path between
them such that the paths consist of only vertices.

(2) For any two distinct variables in H, there exist an x-edge and a y-edge
between them.

(3) For any variable h € H and any vertex v € V — V(h), there exist an x-path
and a y-path between h and v.

(4) For any variable h € H and any vertex v € V' (h), there exists no layout edge
between h and wv.

(5) There is no x-cycle and y-cycle in g.

Discovering Knowledge from 2-D Structured Data using LFGS 145

Y= {a}, A= {a}, X = {z,y}
V = {v1,v2,v3},

E = {(v1,a,v2), (v2,a,v1), (v2,a,vs3), (v3,a,v2)}

t H = {(v2, v3), (v1,v3)},
t F = {(1)27)(71)1)7(vl,X,Ug),(UQ,Y,US),(US,val)v
a N i o7 e > x-edge (v2,v3), X, (v1,v3)), ((v2,v3), ¥, (v1,v3)),

(
é (’U1,X, (Ug,Ug)),(Ug,X, (U1,’U3)),
| y—edge ((UQ’U3),Y7U1)7(U2,.Y7 (’1)1,’!)3))}.

Fig. 2. A layout term graph g = (V, E, H, F). A variable is represented by a box
with thin lines to its elements and its variable label is in the box. An edge is
represented by a thick line.

(6) For any variable h = (v1,...,v;) € H whose variable label is x, there exist
an x-path from v; to v;11 and a y-path from ve-1(;) to ve-1(;4q) for all
1 2 .. k
1 <1i<k—1, where perm(z) = .
=is perm®) = ey et et
A layout term graph g = (V, E, H, F) is ground if H = (). We note that a term
graph defined in [10] is regarded as a layout term graph having no layout edge.
If both (u,a,v) and (v,a,u) are in E, we treat the two edges as one undirected
edge between u and v. A vertex labeling function and a variable labeling function
of g are denoted by ¢, : V — X and A\, : H — X, respectively.

Ezample 1. In Fig. 2, we give a layout term graph ¢ = (V, E, H, F). rank(x) =
rank(y) = 2, perm(zx) = (} ;) and perm(y) = (; ?) Then, (ve,vs) -

1 2 1 2
perm(z) = (va, v3) 1 2 > = (v2,v3) and (v, v3)-perm(y) = (v1,v3) (92 1)
)

= (v3,v1). dist((ve,x,v1)) = dist((v1, x, (v2,v3))) = 2,

dist((va, x, (v1,v3))) = dist(((v2,v3), x, (v1,v3))) = 3, dist((v1, x,v3)) = 4,
dist((va,y,v3)) = 2, dist((vs,y,v1)) = dist((va,y, (v1,v3))) = 3,
dist(((v2,v3),y,v1)) = 4, and dist((v2, v3), y, (v1,v3)) = 5.

Let g = (V,E, H, F) be a layout term graph. From the definition of a layout
term graph, there exist an x-path which passes all vertices in V. This x-path
is called a Hamiltonian x-path. The occurrence order of vertices is shown to be
unique for all Hamiltonian x-paths. The occurrence order of a vertex v € V over a
Hamiltonian x-path is denoted by Ord(v) € N'*. Inversely, for 1 <4 < [V], the
i-th vertex over a Hamiltonian x-path is denoted by Verff (i) € V. Similarly, there
is a y-path which passes all vertices in V' and we call this y-path a Hamiltonian y-
path. The occurrence order of vertices is shown to be unique for all Hamiltonian

146 Tomoyuki Uchida et al.

y-paths. The occurrence order of a vertex v in V over a Hamiltonian y-path
is denoted by Ord} (v) € Nt and the i-th vertex is denoted by Very (i) for
1 <4 < |V|. For a layout term graph g = (V, E, H, F), F can give a layout of g.

Ezample 2. Let g = (V, E, H, F') be the layout term graph in Fig. 2. Sequences
of layout edges ((v2, x,v1), (v1,%,v3)) and ((v2,y,vs), (v3,y,v1)) are the Hamil-
tonian x-path and the Hamiltonian y-path of g, respectively. Ordé‘(vg) =1,
Ord¥(vi) = 2, Ord}(vs) = 3, Ord) (vy) = 1, Ordy) (vs) = 2, and Ordy (v1) = 3.
Very(1) = va, Very(2) = vi, Very(3) = vz, Very (1) = vy, Very (2) = vs, and
Ver‘g/(3) = 0.

In the same way as logic programming system, an atom is an expression of
the form p(g1, ..., gn), where p is a predicate symbol with arity n and g1, ..., gn
are layout term graphs. Let A, By, ..., B, be atoms with m > 0. Then a graph
rewriting rule or a rule is a clause of the form A «— By,..., By,.

Definition 2. A program of Layout Formal Graph System (an LFGS program,
for short) is a finite set of graph rewriting rules.

For example, the LFGS program I'rrsp in Fig. 3 generates a family of two-
terminal series parallel graphs (TTSP graphs, for short) with layouts. A series-
parallel graph is a multiple directed acyclic graph obtained by recursively apply-
ing two composition rules, called a series composition rule and a parallel com-
position rule. A TTSP graph is a series parallel graph having two distinguished
vertices s and ¢ called source and sink, respectively.

Let g = (V,E, H,F) be a layout term graph. Let P* and PY be a longest
Hamiltonian x-path and a longest Hamiltonian y-path, respectively. The mini-
mum layout edge set of g is the subset F” of F such that F' = F—{J ¢ (x yy{(c, s, d)
€ F | (¢,s,d) is not in P* and the total of distances between ¢ and d over P* is
greater than or equal to dist((c, s,d))}. Layout term graphs g = (V,, E,, Hy, Fy)
and f = (Vy, Ey, Hy, Fy) are isomorphic, which is denoted by g ~ f, if there
exists a bijection 7 : V; — V; satisfying the following conditions (1)-(4). Let Fy
and F']’c be the minimum layout edge set of g and f, respectively. For a varlable
(ug,ug,...,ug) € H, 7((u1,us,...,u)) denotes (w(ui), w(uz),...,7(ux)).

(1) y(0) = 7 (x(v) for any v € V.

(2) (u a,v) € Eg if and only if (7(u),a, 7(v)) € Ey.

(3) he Hy it and only if w(h) € Hy, and A\g(h) = A¢(m(h)).

(4) For each s € {x,y}, (¢,s,d) € Fy if and only if (7(c),s,n(d)) € F} and
dist((c, s,d)) of g is equal to dist((n(c), s, n(d))) of f.

Theorem 1. Let g and f be layout term graphs. The problem of deciding whether
or not g and f are isomorphic is solvable in polynomial time.

Proof For layout term graphs g = (Vy, Eg, Hy, Fy) and f = (Vy, Ef, Hy, Fy),
we consider a mapping 7 : V; — V; which assigns the vertex v of f for a vertex
u of g such that Ord}(u) = Ordif (v). Since the occurrence order of any vertex

Discovering Knowledge from 2-D Structured Data using LFGS 147

Fig.3. An LFGS program Ippsp which generates a family of TTSP graphs
with layouts

of each layout term graph is unique for all Hamiltonian x-paths and |V | = |V¥|,
the mapping 7 is a bijection from V; to V. For a layout term graph, we can find
a bijection 7 in polynomial time by using an algorithm for finding a Hamiltonian
path for a directed acyclic graph in [1]. We can easily decide whether or not 7
satisfies the isomorphic conditions for g and f in polynomial time. (QED)

Let g = (V, E, H, F) be a layout term graph, o be a list (v1,va,...,v;) of k

1 2 ... k
vertices in V', x be a variable label in X with perm(zx) = .
perm(a) (su) £2) - 5<k>>
The form x := [g, 0] is called a binding of x if there are x-paths from v; to v;41

of g and there are y-paths from ve-1(;) to vg-1(;41) of g for all 1 <4 < k — 1.
For a list S of vertices, we denote by S[m] the m-th element of S. A substitution
6 is a finite collection of bindings {1 := [g1,01],...,Zn = [gn,0n]}, Where
x;’s are mutually distinct variable labels in X and each ¢; (1 < i < n) has no
variable label in {z1, ..., 2, }. In the same way as logic programming system, we
obtain a new layout term graph f, denoted by g6, by applying a substitution

148 Tomoyuki Uchida et al.

0 = {x1 :=[g1,01],...,%n := [gn,0n]} to a layout term graph g = (V, E, H, F)
in the following way. Let N = |V| and r; = rank(z;), and the number of vertices
of g; is denoted by N; for all 1 <i < n.

(1) First, for all 1 < ¢ < n, we replace all variables having the variable label x;
with the layout term graph g; as follows. Let h%, hf, el hf be all variables
which are labeled with the variable label z;. And let C; be the set of all layout
edges incident to one of the variables h}l, h?, ..., hf Then, we attach the k;
layout term graphs g}, g2, - ,gfi, which are copies of g;, to g according to
the k; lists o}, 02, ..., 0% which are the k; copies of o; in the following way.
We remove all variables hl, h?, ..., hf from H and all layout edges in C}
from F, and identify the m-th element h?[m] of h? and the m-th element
Uf [m] of Uf for all 1 < j <k; and all 1 < m < r;. Then, the resulting graph
is denoted by fo. We assume that the vertex label of each vertex hz [m)]
(1 < m <) is used for fo, that is, the vertex label of o [m] is ignored in
fo-

(2) Next, for alli =1,...,nand all j = 1,...,k;, a layout of fy is updated by
adding new layout edges to fo so that gf satisfies the conditions in Definition
1 as follows.

(i) For all u € V — V(h?) such that Ord}(u) < Ordff(hg[l]), we add a
new x-edge to fo as follows. If (u,x, hf) € C; (the vertex u; of g in
Fig. 4 is an example of u), we add (u, x, Ver;-(l)) to fo (the layout

edge (u1,x, Ver;i-(l)) is added in g@ of Fig. 4). If (h},x,u) € C; and
Ord, (o7[1]) > 1, we add (Ver’ (Ord; (o7[1]) = 1), x,u) to fo.

(ii) Forallu e V — V(h]) such that there exists m < r; satisfying the condi-
tion Ord}(h][m]) < Ord}(u) < Ord}(hi[m+1]) and Ord;{g (ol[m])+1 <
Ordéﬂ (o7 [m+1]), we add a new x-edge to fo as follows. If (u,x, b)) € C;
(the vertex ug of g in Fig. 4 is an example of u), we add (u,x,v) to
fo, where v is Ver;i- (Ord;—; (o][m]) + 1) (the vertex v of g; in Fig. 4 is
given as an examplle and the layout edge (uz,x,v) is added in g#). If
(h],x,u) € C;, we add (Ver;i (Ord;i- (o] [m+1]) — 1), x,u) to fo.

(iii) For all u € V — V/(h]) such that OrdX(h![r;]) < OrdX(u), we add a new
x-edge to fo as follows. If (u,x, hl) € C; and the vertex o [r;] is not the
rightmost vertex in g/ (such as uz in Fig. 4), we add (u, x, Ver;(j (Ord;i- (
ol[ri]) + 1)) to fo. If (b, x,u) € C; (the vertex uz of g in Fig. 4 is an

example of u), we add (w, x,u) to fo (the layout edge (Ver;i (N:), x, us)
is added in g# of Fig. 4). where w is the rightmost vertex of gf

For each added layout edge e, we set dist(e) to the distance of the layout edge

between u and hl.For any d € VU(H —{hl,..., hf’}) in g and any variable

hin gj, we add a new x-edge (d,x,h) with dist((d,x,h)) = dist((d, x, hj))
to fo if (d,s,h]) € C; and there is not an x-path from h to d in fy. And

Discovering Knowledge from 2-D Structured Data using LFGS 149

we add a new x-edge (h,x,d) with dist((h,x,d)) = dist((h!,x,d)) to fo if
(hl,x,d) € C; and there is not an x-path from d to h in fo. In a similar way,
we add new y-edges to fy. Then, the resulting graph f is obtained from fo.

When a layout is ignored, we note that the above operation of applying a sub-
stitution to a layout term graph is the same as that of a term graph in [16]. In
Fig. 5, we give the layout term graph g6 obtained by applying the substitution
0 = {x :=[g1, (w1, w2)],y := [g2, (u1,us)]} to the term graph g as an example.
A wunifier of two layout term graphs ¢g; and go is a substitution 6 such that
910 ~ g20. A unifier 6 of g; and go is a most general unifier (mgu) of g1 and ga,
if for any unifier 7 of g; and go, there exists a substitution ~ such that 7 = 6~.

Lemma 1. There exists no mgu of two layout term graphs, in general.

Proof (Sketch) We can obtain this lemma by showing that two layout term
graphs g1 and g, in Fig. 6 have no mgu. Assume that ¢g; and go have a unifier
0 = {x :=[g, (u1,u2)]} and g has a variable. The leftmost vertex (the vertex u of
gin Fig. 6) in V(H) is at the k-th position in the x-path of g = (V, E, H, F'). Then
the leftmost vertex (the vertex u of g16 in Fig. 6) in V (Hyg,) is at the (k4 1)-st
position in the x-path of g10 = (Vy,9, Eg,0, Hg,0, Fy,0). The leftmost vertex (the
vertex u of g0 in Fig. 6) in V(Hy,p) is at the k-th position in the x-path of
920 = (Vgo0, Eg,0, Hgp0, Fgo0). Since ¢g10 ~ g26, we have a contradiction. So any
unifier of g1 and go is of the form 6 = {z := [g, (u1,u2)]} for a ground layout
term graph g. We can show that, for n > 1, a substitution {z := [f,, (v1,v2)]}
for a ground layout term graph f, in Fig. 6 is a unifier of g; and gs. Thus any
unifier of g1 and g3 is not an mgu of g; and g». (QED)

Notions of a goal, a derivation and a refutation are defined in a way similar
to those in logic programming [7], except that a unifier instead of an mgu is
used in a derivation and a refutation. Due to Lemma 1, in LFGS a derivation
is based on an enumeration of unifiers and only ground goal is considered. We
say that a ground layout term graph g is generated by an LFGS program I" and
its predicate symbol p if there exists a refutation in I' from the goal «— p(g).
And the set of all ground layout term graphs generated by I' and its predicate
symbol p is said to be definable by I" and p, and the set is denoted by GL(I, p).

3 LFGS and Layout Graph Grammar

In [1], Brandenburg presented Layout Graph Grammar (LGG) consisting of an
underlying context-free graph grammar and layout specifications. Its underlying
context-free graph grammar is a vertex replacement system such as Node-Label
Controlled Graph Grammar (NLCG) in [5]. LFGS is a logic programming system
obtained by extending Formal Graph System (FGS) [16] for two-dimensional
graph structured data. In [16], we gave an interesting subclass of FGS, which is
called a regular FGS. And we showed that the set of graphs L is definable by a
regular FGS program if and only if L is generated by a hyperedge replacement

150 Tomoyuki Uchida et al.

i O yE°
y K “B)E°pSt Y yE CKS | yE "R)E°R B
y E KKS vy K °Bi DI p
vE B od v E OBIES
v E_°B DB yE_OKS
g
£ tym()g27(D

----- » glaSca
-——» gBHd
s 2)8

X

5 72)8% yln 821D £ sm282D T f s m2)82)8 D
s m282 JRNY 5 o 894 0K 1aND> 282 (B
s 1’062(>gz ()K D

i

xy~2, P
2PK N
Xy Pl xyPEN
----- > pl%df e
s chrgioem’.)
,,,,,,,,,,, pR crg i oen?

g0

Fig. 4. Updating layout edges for g6, where g = (V, E, H, F) is a layout term
graph, 0 = {---,z; := [g;,0i],- -}, N = |V|, r; = rank(z;), and the number of
vertices in g; is IV;.

Discovering Knowledge from 2-D Structured Data using LFGS 151

g1 g2 g g0

Fig. 5. Ground layout term graphs g1 and go, a layout term graph g, a substitution
0 = {x :=[g1, (w1, w2)],y := [g2, (u1,u4)]} and the resulting layout term graph g@

grammar [5]. And in [15], we showed that for an NLCG G, there exist an FGS
program I and its predicate symbol p such that the set of graphs generated by
G is definable by I' and p. In this section, we show that LFGS is more powerful
than LGG w.r.t. the sets of generated graphs.

First of all, we introduce some notions of LGG. A graph g = (V, E, m) over X
and A consists of a finite set of vertices V, a vertex labeling function m : V- — X
and a finite set of edges £ = {(u,a,w) | u,w € V,u # w and a € A}. In the
same way as a layout term graph, let E* = {(u,s,w) | u,w € V,u # w}, and
g° = (V,E*,m) for s € {x,y}. In order to simplify the discussion in comparing
LFGS with LGG, we consider g* = g% U ¢ satisfying the following conditions
(1) and (2). And g¢* is called a drawing specification.

(1) g% and gV are acyclic.
(2) For every pair of vertices (u,w) with u # w, there is a path over g* from u
to w, or conversely, And there is a path over ¢7 from u to w, or conversely.

Let N, T and A be alphabets such that N NT = §. An element of N, T
and A is called a nonterminal vertex label, a terminal vertex label and a terminal
edge label, respectively. A graph grammar employed in LGG is one of the vertex
replacement systems such as node-label controlled graph grammars [6] defined
as follows.

Definition 3. A graph grammar is a system GG = (N,T U A, P, S) defined
as follows. P is a set of finitely many productions of the form p = (A, R, C),
where A is a nonterminal vertex label in N, R is a nonempty graph and C is a
connection relation consisting of tuples (B, a,u) with B€ NUT, a € A and u
being the vertex of R. And S is the axiom and is regarded as a vertex having
the vertex label S.

A direct derivation step g = ¢’ rewrites a graph g = (V, E,m) into a graph
g = (V',E',m’) by applying a production p = (A, R,C) to a vertex w having
a nonterminal vertex label A as follows. Replace w by an isomorphic copy of

152 Tomoyuki Uchida et al.

919 920

Fig. 6. Layout term graphs ¢g; and g, which have no mgu

R that is disjoint with g. Then establish edges between the neighbors of w
and the vertices of R as specified by C. That is, V! = (V — {w}) U V(R),
where V(R) is the set of all vertices of R. And an edge e = (s,a,t) is in E’
if and only if e € F with s # w and w # t or e € E(R) or e is established
by a connection from C' as follows, where E(R) is the set of all edges in R.
If (B,a,u) € C and u € V(R), then (v,a,u) is an edge of ¢’ if and only if
v has a nonterminal vertex label B and (v,a,w) is an edge in g. The graph
language generated by a graph grammar GG, denoted by L(GG), is the set of
all generated graphs with terminal vertex labels. That is, L(GG) = {g | S =*
g,m(w) is a terminal vertex label for every vertex w € V(g)}.

Definition 4. A layout graph grammar LGG = (GG, LS) consists of a graph
grammar GG and a layout specification LS associating finitely many drawing
specifications with each production of GG.

We consider a derivation step of GG in which ¢’ is obtained from g by replac-
ing a vertex w of g by the graph R according to p. Then, the drawing specification
is updated as follows. In g%, the x-edges incoming to w are transferred to the
vertex of R having no incoming x-edge, and the x-edges outgoing from w are
transferred from the vertex of R having no outgoing x-edge. y-edges are treated
similarly. The language L(LGQG) of a layout graph grammar LGG = (GG, LS)

Discovering Knowledge from 2-D Structured Data using LFGS 153

consists of the set of all pairs (g, DS(g)) such that ¢ € L(GG) and DS(g) is
constructed along a derivation S =* g.

Theorem 2. Let G be an LGG. Then there is an LFGS program I' and its
predicate symbol p such that GL(I',p) = L(G).

Proof (Sketch) We construct graph rewriting rules according to productions in
LGG G and according to the operation of adding new edges in a derivation step.
Then, we can obtain the LFGS program I from G. By simulating a derivation of
G with a refutation of I" and conversely, we can prove L(G) = GL(I',p). (QED)

The interesting sets of graphs such as the trees and the binary trees, the
series parallel graphs, the partial k-trees for fixed k, the maximal outerplanar
graphs, and the complete graphs, are generated by a graph grammar which is
employed by LGG [1]. From Theorem 2, these sets are also definable by LFGS.
In [15], we showed that there exists a set of graphs L such that FGS can define L
but not generated by any NLCG. This result and Theorem 2 suggest that LFGS
is more powerful than LGG.

4 Refutably Inductive Inference of LFGS Programs

In this section, we introduce a sufficiently large hypothesis space of LFGS pro-
grams, the set of weakly reducing LFGS programs, and show that the hypothesis
space is refutably inferable from complete data. Since Mukouchi and Arikawa
[11] showed that refutably inductive inference is essential in machine discovery
from facts, this result gives a theoretical foundation of our knowledge discovery
system from two-dimensional structured data with such an LFGS program as a
hypothesis.

We give our framework of refutably inductive inference of LFGS programs
in a way based on our previous results [3,9]. In this section we assume that the
distance of any layout edge is bounded by a constant. Let ¢ = (V, E, H, F) be
a layout term graph. Then we denote the size of g by |g|| and define ||g| =
V| + |E| + |H|. For example, ||g|| = |V|+ |E|+ |H| =3+4+2 =9 for the
layout term graph ¢ = (V,E, H, F) in Fig. 2. For an atom p(g1,...,9n), we
define [[p(g1, -, ga)ll = lgsll +--- + llgall

Definition 5. A graph rewriting rule A < By,..., B, is said to be weakly
reducing if ||Af|| > ||B;0| for any i = 1,...,m and any substitution 6. An
LFGS program I is weakly reducing if every graph rewriting rule in I" is weakly
reducing.

For example, the LFGS program I'7rgp in Fig. 3 is weakly reducing. The set
of all ground atoms is called the Herbrand base, denoted by HB, and is considered
as the set of all training examples. A subset I of HB is called an interpretation,
and is considered as a set of positive training examples. An LFGS program I is
called a correct program for an interpretation I if the least Herbrand model of
I, which is the set of all ground atoms proved from I, is equal to I. A complete

154 Tomoyuki Uchida et al.

presentation of an interpretation I is an infinite sequence (wy, t1), (wa,t2), - - of
elements in HB x {4, —} such that {w; | t; = +,i > 1} =T and {w; | t; = —,i >
1} =HB-1.

A refutably inductive inference algorithm is a special type of inductive infer-
ence algorithm. The algorithm receives a complete presentation as an input. If
the algorithm produces the sign “refute” and stops, we say that the algorithm
refutes the hypothesis space. A refutably inductive inference algorithm produces
hypotheses as outputs or refutes a given hypothesis space. A refutably inductive
inference algorithm is said to converge to an LFGS program I" for a presenta-
tion, if it produces the same LFGS program I after some finitely many times of
hypothesis changes.

Definition 6. A refutably inductive inference algorithm is said to refutably infer
a hypothesis space H from complete data, if it satisfies the following condition.
For any interpretation I C HB and any complete presentation ¢ of I, (1) if there
exists a correct program in H for I then the algorithm converges to a correct
program in H for I from 4, (2) otherwise the algorithm refutes H from 4.

Theorem 3. For any n > 1, the hypothesis space WRIEM of all weakly reduc-
ing LEGS programs with at most n graph rewriting rules has infinitely many
hypotheses. And WRIEM s refutably inferable from complete data.

This theorem can be shown in a way based on [11,14]. We can construct
a machine discovery system for a refutably inferable hypothesis space. Thus
Theorem 3 gives a theoretical foundation of our knowledge discovery system. By
a simple enumeration of hypotheses, the hypothesis space WREM s inferable
but not refutably inferable. If the number of graph rewriting rules is not bounded
by a constant, then this hypothesis space is not refutably inferable. In case that
the distance of a layout edge is not bounded by a constant, we need another
learning method about distances of layout edges.

5 Concluding Remarks

We have given a framework of discovering knowledge from two-dimensional graph
structured data with positional relations such as image or map data. We have
defined a layout term graph for representing two-dimensional graph structured
data. And we have proposed Layout Formal Graph System (LFGS) as a new
logic programming system which is used as a knowledge representation language.
Also we have shown that LFGS is more powerful than Layout Graph Grammar
(LGG). Finally we have designed a knowledge discovery system using LFGS for
two-dimensional graph structured data.

We have shown that the isomorphism problem for layout term graphs is
solvable in polynomial time. However, in order to develop a knowledge discovery
system, we must construct an efficient algorithm for finding a unifier of a ground
layout term graph and a layout term graph.

Discovering Knowledge from 2-D Structured Data using LFGS 155

References

1.

10.

11.

12.

13.

14.

15.

16.

F. J. Brandenburg. Designing graph drawings by layout graph grammars. Proc.
Graph Drawing ’94, Lecture Notes in Computer Science, Vol. 894:416-427, 1994.
143, 149, 153

. D. J. Cook and L. B. Holder. Substructure discovery using minimum descrip-

tion length and background knowledge. Journal of Artificial Intelligence Research,
1:231-255, 1994. 143

P. Finn, S. Muggleton, D. Page, and A. Srinivasan. Pharmacophore discovery using
the inductive logic programming system progol. Machine Learning, pages 241-270,
1998. 142

M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, 1979. 147

A. Habel and H.-J. Kreowski. May we introduce to you: hyperedge replacement.
Proceedings of the 3rd International Workshop on Graph-Grammars and Their
Application to Computer Science, LNCS 291, pages 15-26, 1987. 149, 151

D. Janssens and G. Rozenberg. On the structure of node-label-controlled graph
languages. Information Sciences, 20:191-216, 1980. 151

J. W. Lloyd. Foundations of Logic Programming, Second, FExtended Edition.
Springer-Verlag, 1987. 149

T. Miyahara, T. Shoudai, T. Uchida, T. Kuboyama, K. Takahashi, and H. Ueda.
Discovering new knowledge from graph data using inductive logic programming.
Proc. ILP-99, Springer-Verlag, LNAI 1634, pages 222-233, 1999. 142, 153

T. Miyahara, T. Uchida, T. Kuboyama, T. Yamamoto, K. Takahashi, and H. Ueda.
KD-FGS: a knowledge discovery system from graph data using formal graph sys-
tem. Proc. PAKDD-99, Springer-Verlag, LNAI 157/, pages 438-442, 1999. 142,
153

S. Muggleton, A. Srinivasan, R.D. King, and M.J.E Sternberg. Biochemical knowl-
edge discovery using inductive logic programming. Proc. DS-98, Springer-Verlag,
LNAI 1532, pages 326-341, 1998. 142

Y. Mukouchi and S. Arikawa. Towards a mathematical theory of machine discovery
from facts. Theoretical Computer Science, 137:53-84, 1995. 153, 154

L. R. Quinlan. Induction of decision trees. Machine Learning 1, pages 81-106,
1986. 142

J. Rissanen. Modeling by the shortest data description. Automatica 14, pages
465-471, 1978. 143

T. Shinohara. Rich classes inferable from positive data: length-bounded elementary
formal systems. Information and Computation, 108:175-186, 1994. 154

T. Uchida, T. Miyahara, and Y. Nakamura. Formal graph systems and node-label
controlled graph grammars. Proc. 41st Inst. Syst. Control and Inf. Eng., pages
105-106, 1997. 151, 153

T. Uchida, T. Shoudai, and S. Miyano. Parallel algorithm for refutation tree prob-
lem on formal graph systems. IEICE Transactions on Information and Systems,
E78-D(2):99-112, 1995. 142, 145, 149

Hypotheses Finding via Residue Hypotheses with
the Resolution Principle

Akihiro Yamamoto!:2 and Bertram Fronhé&fer3

! Faculty of Technology and MemeMedia Laboratory, Hokkaido University
N 13 W 8, Kita-ku, Sapporo 060-8628 Japan
2 “Information and Human Activity”, PRESTO, JST
yamamotoC@meme .hokudai.ac. jp
3 Institut fiir Informatik, TU Miinchen
D-80290 Miinchen
fronhoef@informatik.tu-muenchen.de

Abstract. For given logical formulae B and F such that B & E, hypothesis
finding means the generation of a formula H such that B A H = E. Hypoth-
esis finding constitutes a basic technique for fields of inference, like inductive
inference and knowledge discovery. It can also be considered a special case of
abduction. In this paper we define a hypothesis finding method which is a com-
bination of residue hypotheses and anti-subsumption. Residue hypotheses have
been proposed on the basis of the terminology of the Connection Method, while
in this paper we define it in the terminology of resolution. We show that hy-
pothesis finding methods previously proposed on the bases of resolution are
embedded into our new method. We also point out that computing residue hy-
potheses becomes a lot more efficient under the restrictions required by the
previous methods to be imposed on hypotheses, but that these methods miss
some hypotheses which our method can find. Finally, we show that our method
constitutes an extension of Plotkin’s relative subsumption.

1 Introduction

For given logical formulae B and E such that B £ E, hypothesis finding means the
generation of a formula H such that BAH = E. The formulae B, F, and H are intended
to represent a background theory, a positive example, and a hypothesis respectively.
Hypothesis finding constitutes a basic technique for fields of inference, like inductive
inference and knowledge discovery. It can also be considered a special case of abduction.
This paper treats hypothesis finding in clausal logic.

Various methods were developed for hypothesis finding on the basis of the resolution
principle, but many of them imposed severe restrictions on the hypotheses to be gener-
ated. The abductive inference by Poole [12] and its improvement [6] require that every
hypothesis should be a conjunction of literals. Some methods developed in the area
of Inductive Logic Programming, e.g. the bottom method (or the bottom generalization
method) [16], inverse entailment [9] ', and saturation [13], generate hypotheses which
consist of exactly one clause. As we pointed out in [19] some important hypotheses
might be failed to generate under such restrictions.

! In previous works [15,16] by one of the authors, the bottom method was not well distin-
guished from inverse entailment.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 156-165, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Hypotheses Finding via Residue Hypotheses with Resolution Principle 157

In order to remove such restrictions and also in order to put hypothesis finding on
general grounds, we have recently proposed a new concept : residue hypotheses [1,5].
Residue hypotheses are defined on the basis of the terminology of the Connection
Method, which is a special method for theorem proving [2]. Based on the residue
hypothesis concepts we have developed several hypothesis finding methods and shown
that they are generalizations of the bottom method.

In this paper we define residue hypotheses in terminology of resolution. The def-
inition gives at least two contributions. Firstly we show that residue hypotheses are
useful in design and analysis of hypothesis finding even when we adopt the resolution
principle as its basis. The second is to give a solution to a problem which we have left
unsolved in the previous research.

Residue hypotheses were initially defined in propositional logic, and then lifted up
to first-order logic by using anti-instantiation. We have mentioned that some method
other than anti-instantiation should be employed for more flexible hypotheses, but did
not give any proposal for it. As an answer to this problem, anti-subsumption is proposed
in this paper. Subsumption is originally defined as a relation of two clauses. It can be
extended in several manners to a relation of two sets of clauses. We adopt an extension,
denoted by 3, which was proposed in a learning algorithm of logic programs [1]. In
order to make our discussion general and simple, we define the residue hypothesis for
any satisfiable set S of clauses and denote it by Res(.S). The main theorem shows that

S+ T = Res(T) 3 Res(S5)

where I is provability by resolution, set inclusion, and subsumption. Since all of the
resolution-based methods above make resolvents and subsumed clauses from B U E,
where E is a negation of (skolemized) E, any hypothesis derived by them can also be
derived by the combination of residue hypotheses and the inverse of . This shows that
anti-subsumption is appropriate for the replacement of anti-instantiation.

With the main theorem we show which type of hypotheses may be missed by
resolution-based methods but can be found by our new method. Moreover, the the-
orem shows that our hypothesis finding method defines a new relation between sets
of clauses, as an extension of Plotkin’s relative subsumption [11]. These results are
contribution to the first aim of this paper.

This paper is organized as follows: In the next section we define terminology and
notation for our discussion. In Section 3 we define residue hypotheses in the terminology
of resolution. In Section 4, we give the main result which shows how resolution proofs
affect hypothesis finding, and in Section 5 we explain the relation between the main
result and the bottom method and Poole’s method for abduction. In the last section
we give a view on the complexity of computing residue hypotheses.

2 Hypothesis Finding in Clausal Logic

We assume the readers to be familiar with first-order logic and clausal logic. When
more precise definitions are needed, we refer them to textbooks on these areas (e.g.
[2,3,8)).

Let £ be a first-order language. As in the Prolog language, each variable is assumed
to start with a capital letter. For each variable X we prepare a new constant symbol

158 Akihiro Yamamoto and Bertram Fronhofer

cx called the Skolem constant of X. We let L£° denote the language whose alphabet is
obtained by adding all the Skolem constants to the alphabet of L.
In this paper a clause is a formula of the form

C=VX1.. . Xp(A1 VAV ... VA, V=B V~-ByV...V—Bp)

where n > 0, m > 0, A;’s and B;’s are all atoms, and Xi,..., X} are all variables
occurring in the atoms. We sometimes represent the clause C' in the form of the impli-
cation

Al,AQ,...,An — Bl,BQ,...,Bm.

In this paper we define a clausal theory as follows:

Definition 1. A clausal theory is a finite set of clauses without any tautological clauses
which represents the conjunction of clauses contained therein. The set of all clausal
theories in £ (L) is denoted by CT(L) (CT(L®) resp.).

Let S be a clausal theory. We assume that no pair of clauses in S share variables. A
substitution og replaces each variable in S with its Skolem constant. The set of ground
clauses which is an instance of some clause in S is denoted by ground(S).

Definition 2. For a ground clausal theory S = {C1,Cq, ..., Cy} where
Ci :Li,IVLi,2v~-~\/Li,ni for i = 1,2,...,m,
we define its complement® as the set of clauses

S = {—|L17j1 V _‘L2,j2 V...V _‘Lm,jm

1§]1 thl §]2 §n2771 S]m Snm}
When any variable occurs in S, we define S = Sog.

Definition 3. A hypothesis finding problem (HFP, for short) in clausal logic is defined
as a pair (B, F) of satisfiable clausal theories such that B j~ E. The theory B is called
a background theory, and each clause in F is called a positive example. A solution to
the HF P(B, E) is given by any clausal theory H such that BU H = E.

Because we do not consider any negative example, an example means a positive example
in this paper.

Definition 4. A fitting procedure (or a fitting, for short) F is a procedure which gen-
erates hypotheses H from a given example F with the support of a background theory
B. The set of all such hypotheses is denoted by F(E, B).

Each of the fittings we are now discussing can be represent as a main routine
consisting of two sub-procedures. The first sub-procedure enumerates highly specific
clausal theories and the second generalizes each of them. We give formal definitions.

Definition 5. A base enumerator A is a procedure which takes an example E and a
background theory B as its input and enumerates ground clausal theories in £°. The
set of clausal theories enumerated in the procedure is denoted by A(FE, B) and called
a base set.

2 Using the terminology of the Connection Method, the complement of S corresponds to the
set of negated paths in the matrix representation of S.

Hypotheses Finding via Residue Hypotheses with Resolution Principle 159

Definition 6. A generalizer I' takes a ground clausal theory K in £° and generates
clausal theories in £. The set of clauses generated by I" is denoted by I'(K).

Procedure FIT, r(E, B)

1. Choose non-deterministically a ground clausal theory K from A(E, B).
2. Return non-deterministically clausal theories in I'(K).

If either of the sets A(E, B) and I'(K) is infinite, we must use some dovetailing method
in order to enumerate all elements in these sets. In our discussion we need not mind
about how the dovetailing is implemented.

3 Residue Hypotheses

In order to make our discussion simple, we put S = B U E and slightly modify some
definitions in our previous work [4,5].

Definition 7. For an unsatisfiable and ground clausal theory S, the residue hypothesis
for S is defined as a clausal theory which is obtained by deleting all tautological clauses
from S. The residue hypothesis is denoted by Res(S)®.

We can obtain Res(S) from a ground clausal theory S by deleting all clauses containing
pairs of complementary literals.

Hypotheses finding with residue hypotheses is based on Herbrand’s theorem, which
is described in textbooks on Automated Theorem Proving (e.g. [2,3,3])%.

Theorem 1 (Herbrand). A finite set S of clauses is unsatisfiable if and only if there
is a finite and unsatisfiable subset of ground(S).

For our aim we use the following corollary.

Corollary 1. Let S be a clausal theory and T be a ground clausal theory such that T C
ground(S). Then S U H is unsatisfiable for any clausal theory H such that Res(T) C
ground(H).

In [4,5] we used this corollary directly. That is, we considered an enumerator GT' and
a generalizer AI which satisfy the following specifications:

GT(S)={K € CT(L°)| K = Res(T) for some T such that T C ground(S) },
AI(K)={H € CT(L)| HO = K for some substitution 0 }.

In the next example we apply the fitting FITgr ar to a hypothesis finding problem.

3 Each of clause in Res(S) corresponds to a mnon-complementary path in the Connection
Method terminology. This definition via non-complementary paths was used in [4,5].

* Theorem 1 is called “Herbrand’s Theorem, Version 11”7 in Chang and Lee’s textbook [3],
which has two versions of “Herbrand’s Theorem”.

160 Akihiro Yamamoto and Bertram Fronhofer

Example 1. Let us consider the background theory
B; = {pet(X) « dog(X), small(X)}
and the positive example
E; = {pet(c) «}.
Let S; = B; U E;. Then

pet(c) — dog(c), small(c) } 7

ground(Sy) = { — pet(c)

and we put 77 = ground(S7). The residue hypothesis for T} is

_ [dog(e)pet(c)
RGS(Tl) - {Small(c)’pet(c) <—} .

By applying anti-instantiation to Res(71), we get the hypothesis

_ {dog(Y),pet(Y) — }
! small(Z),pet(Z) «—

in FITGT,AI(El,Bl). |

We define a weaker form of anti-instantiation using the subsumption relation be-
tween clauses.

Definition 8. A clause C subsumes a clause D, written as C' = D, if every literal in
C#6 occurs in D.

If a clausal theory S is unsatisfiable and a clause D € S is subsumed by C', then the
clausal theory which is obtained by replacing D with C is also unsatisfiable. We extend
subsumption to a relation between two sets of clauses in the following way:

Definition 9. Let H and K be clauses. We define H J K iff, for every clause D in
K, there is a clause C' in H such that C' > D.

Now we revise the fitting FIT¢r ar by replacing the generalizer Al with a general-
izer AS which satisfies

AS(K) = {H € CT(L)|H 3 K}.

Ezample 2. Consider the following background theory and example:

[even(0) «
27 even(s(X)) «— odd(X) [’
By = {odd(s°(0)) «}.
The predicates even and odd are respectively intended to represent an even number
and an odd number. The constant 0 means zero, and the function s is the successor

function for natural numbers. The term which is an n-time application of s to 0 is
written as s”(0). Then for HF P(E,, B2) we may expect the hypothesis

Hy = {odd(s(X)) « even(X)}.

Hypotheses Finding via Residue Hypotheses with Resolution Principle 161

We show that FITgr as derives the hypothesis. At first we make a clausal theory

T, = odd(sg(()

(0)) «
even(s*(0)) <)— odd(s

which is a subset of ground(By U E3). The residue hypothesis for T is

S ey

odd(s°(0)), odd «— even ,even(0),

Res(T3) = dd(s®(0)),odd O)) «— even(s%(0)), even(0),
odd(s5(), odd(s(0)), 0dd(s(0)) « even(0)

Since Hy J Res(T2), H is in FITgr as(E2, Ba).

4 Resolution and Anti-Subsumption

We show that deriving logical consequences from S reduces the search space for the gen-
eralizer AS. We need as preparation a definition and Lee’s Theorem, which shows that
deriving logical consequences of a clausal theory is accomplished by making resolvents
and deriving subsumed clauses.

Definition 10. Let S and T be clausal theories. We write S+ T if there is a sequence
of clausal theories Uy, Uy, ..., U, such that Uy = S, U, is a variant of T, and one of
the following holds for each U; (i =1,2,...n):

1. U; CU;_4.
2. U; = U;—1 U{C} where C is subsumed by a clause in U;_1.
3. U; = U;—1 U{C} where C is a resolvent of some two clauses in U;_1.

Theorem 2 ([7]). Let S and T be clausal theories. Then T is a logical consequence
of T iff SET.

The main theorem is now the following.

Theorem 3. Let S be clausal theory and T be a ground clausal theory. Then S+ T
implies Res(T') 2 Res(S).

Proof. There is a subset U of ground(S) and a sequence Uy = U, Uy, ..., Uy, = T which
satisfies the conditions 1-3 of Definition 10. Then Res(U;) O Res(Ul_l), by Lemma 2,
Lemma 3, and Lemma 4 which are proved below. Therefore Res(T') 3 Res(5). [

Before we will show that each operation for deriving U; from U;_; implies Res(U;_1) 3
Res(U;), we give a lemma on tautologies and subsumption.

Lemma 1. If a clause C' is subsumed by a tautological clause, then C is also a tautol-
0gy.

Lemma 2. For ground clausal theories S and T, S D T implies Res(T) J Res(5).

162 Akihiro Yamamoto and Bertram Fronhofer

Proof. From the definition, it is clear that 7 J S. Then Res(7") J Res(S) by Lemma 1.
[

Lemma 3. Let S be a ground clausal theory. If a ground clause D is subsumed by a
clause C € S, then
Res(S U{D}) J Res(9).

Proof. Without loss of generality, we can assume that
C=L{VILyV...VLp,
D=LiVLyV...NVLypVLpi1V...V L,

Then every clause F in S contains a literal —L; for some i = 1,2,...,m, and is sub-
sumed by a clause F” in S U {D} which is obtained by adding —L; to F'. This means that
SuU{D} D S.If F is not a tautology, F’ is not, either. Then Res(S U {D}) 3 Res(S)
by Lemma 1. []

Lemma 4. Let S be a ground clausal theory and C1 and Cs be clauses in S. Assume
that Cy has a literal L and Cs has =L and let D be the resolvent of Cy and Cy obtained
by deleting L and =L from C1V Cy. Then

Res(S U{D}) J Res(9).

Proof. We prove the theorem in the case when S = {C4, C3}. The proof can easily be
extended if S has more clauses. Let

Cl = L171 V LLQ V...V L17”1 and
Cy = L271 \Y L272 V...V L2,’rb2

and we can assume, without loss of generality, that
L=Liy=Lig=-=Lim =-La1=-Lags="="Lom,
Then the resolvent D is
D=Liy,+1VLim+42V...VLin VLsp,i1VLomeioV ...V Loy,
From the definition we get the following set of clauses:

S={-L1;iV-Ly;|1<i<m,1<j<ny},
E:{ﬁL17i|i:ml+1,m1+2,...,n1}U{ﬁL27j|j:m2+17m2+27...,n2}’
SUDI={CVL|CeS,LeD).

In order to show the result of the theorem, we consider three cases :
Case 1. When m; +1 <i<njand 1 <j < na,

_‘Ll,i \Y _‘L2,j V _‘Ll,i t _|L177; V _‘L2,j-
Case 2. When 1 <i<nj and ms + 1 < j < na,
ﬁLl,i V ﬁLgJ \Y ﬁLgJ - ﬁLl,i V ﬁLgJ.

Case 8. When 1 < ¢ <,my and 1 < j < mo, L1; = —Lo; and therefore =L ; V =Ly ;
is not in Res(9).

Combining the analysis of these three cases and by Lemma 1, we get Res(SU{D}) J
Res(5).]

Hypotheses Finding via Residue Hypotheses with Resolution Principle 163

5 Comparison to Other Work

Poole [12] formalized abductive inference based on resolution, by using the fitting
FITAB,AS where

AB(E,B) = {{H} | H = C for some a ground clause C such that BU E I C}.

Theorem 3 shows that FITap as(E,B) C FITgr as(E, B), which means that the
fitting FIT g7 45 is more powerful than Poole’s method.

Now we will compare FITgr 4s with the bottom method. Since we showed in [17]
that the bottom method is equivalent or more powerful than hypothesis finding meth-
ods well-known in the ILP area, comparison with the bottom method is sufficient.

The bottom method generates hypotheses which consist of only one clause. In the
terminology of this paper, it is FIT gy 45 where

BT(E, B) = {{C} ‘ C'is a ground clause such that BUE - =L } .

for every literal L in C'

As mentioned in [16], FIT gy ar does not differ from FITpr as5. Off course, it is clear
that the bottom method cannot derive any clausal theories consisting of more than
one clause, like H; in Example 1. We showed in [17,18] that the hypothesis Hs in
Example 2 cannot be derived with the bottom method. We will give the difference
between FITg7 a5 and FIT gy 45 more formally as follows:

Theorem 4. For any HFP(B, E), it holds that FITgr as(E, B) 2 FITpr as(E, B).

Proof. All that we have to show is GT(E,B) 2 BT (E,B). Let C = =LV -La V...V
—L,, be a ground clause in BT(E, B). From the definition of BT(F, B), it holds that
BUEF LiANLyA...ALy. Since C = Res(Ly ALy A ... A Ly,), we get a clausal theory
U by Theorem 3 which is a subset of ground(B U E) and C J Res(U). |

The proof of Theorem 4 shows which hypotheses may be missed by the bottom method.
Let U be the clausal theory in the proof and

Uy=UUy,...,.Upn=L1NLyN...NL,

be a sequence of clausal theories deriving Ly A Lo A ... A Ly,. Then FITpr as(E, B)
may not contain a hypothesis H such that H 3 U; for some ¢ = 0,1,...,m — 1 but
H 2 U,,. The hypothesis Hy in Example 2 is such a hypothesis, and therefore is missed
by the bottom method.

The results above can be analyzed from a semantical viewpoint. We showed in [16]
that the bottom method is complete for deriving clauses H which subsume F relative
to B. The definition of relative subsumption was given by Plotkin [11].

Definition 11. Let H and E be clauses and B be a clausal theory. Then H subsumes
E relative to B iff V(HO — E) is a logical consequence of B for some 6.

The condition for the relative subsumption is equivalent to the condition that ~H6ogu
is a logical consequence of B U E for some substitution y which makes Ho g ground.
Then BUE + —HOopu by Lee’s theorem. The proof of Theorem 4 shows that
H € FITgr as if H subsumes E relative to B, which is consistent with our previ-
ous work [16]. In other words, the relation of two clausal theories H and E defined by
H € FITgr,as(E, B) is an extension of Plotkin’s relative subsumption of two clauses.

164 Akihiro Yamamoto and Bertram Fronhofer

6 Concluding Remarks

The problem of computing Res(S) from S is equivalent to the enumeration of all sat-
isfiable interpretations of S. This problem is similar to counting such interpretations,
which is denoted by fSAT and treated in a textbook on the computational complex-
ity [L0]. The problem £SAT is in the class #P. Therefore the complexity of computing
the residue hypothesis is quite high in general.

This fact might explain why the abductive hypothesis finding method and the bot-
tom method were discovered earlier than our method. Assuming severe restrictions on
hypotheses, they derive clausal theories whose residue hypotheses are easily computed.
In fact, the abductive method generates theories consisting of a clause Ly V...V L,
and the bottom method derives theories of the form Li A ... A L,. In both cases the
residue hypotheses of derived theories are computed in linear time. But the comparison
in the last section shows that the efficiency is obtained by missing hypotheses which
might be important.

The generalizer we adopted in this paper is the inverse of subsumption. Resolution-
based theorem proving uses subsumption, factoring and resolution as inference rules.
Therefore the inverse of factoring and that of resolution might be considered as well.
Using them as generalizers in Procedure FIT 4 r(E, B) will be investigated in the near
future.

Acknowledgments

The authors thank Prof. Taisuke Sato, Prof. Chiaki Sakama, Prof. Hiroki Arimura, and
Prof. Koichi Hirata for fruitful discussions.

References

1. H. Arimura. Learning Acyclic First-order Horn Sentences From Implication, In Pro-

ceedings of the 8th International Workshop on Algorithmic Learning Theory(LNAI 1816),

pages 432-445, 1997. 157

W. Bibel. Deduction: Automated Logic. Academic Press, 1993. 157, 159

3. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press, 1973. 157, 159

4. B. Fronhofer and A. Yamamoto. Relevant Hypotheses as a Generalization of the Bottom
Method. In Proceedings of the Joint Workshop of SIG-FAI and SIG-KBS, SIG-FAI/KBS-
9902, pages 89-96. JSAI, 1999. 157, 159

5. B. Fronhofer and A. Yamamoto. Hypothesis Finding with Proof Theoretical Appropri-
ateness Criteria. Submitted to the AI journal, 2000. 157, 159

6. K. Inoue. Linear Resolution for Consequence Finding. Artificial Intelligence, 56:301-353,
1992. 156

7. R.C.T. Lee. A Completeness Theorem and Computer Program for Finding Theorems

Derivable from Given Axioms. PhD thesis, University of California, Berkeley, 1967. 161

A. Leitsch. The Resolution Calculus. The Resolution Calculus, 1997. 157, 159

9. S. Muggleton. Inverse Entailment and Progol. New Generation Computing, 13:245-286,
1995. 156

10. C. H. Papadimitriou. Computational Complezity. Addison Wesley, 1993. 164

11. G. D. Plotkin. A Further Note on Inductive Generalization. In Machine Intelligence 6,
pages 101-124. Edinburgh University Press, 1971. 157, 163

N

o

12.

13.

14.

15.

16.

17.

18.

19.

Hypotheses Finding via Residue Hypotheses with Resolution Principle 165

D. Poole. A Logical Framework for Default Reasoning. Artificial Intelligence, 36:27—47,
1988. 156, 163

C. Rouveirol. Extensions of Inversion of Resolution Applied to Theory Completion . In
S. Muggleton, editor, Inductive Logic Programming, pages 63-92. Academic Press, 1992.
156

T. Sato and S. Akiba. Inductive Resolution. In Proceedings of the 4th International
Workshop on Inductive Logic Programming (LNAI 744), pages 101-110. Springer-Verlag,
1993.

A. Yamamoto. Representing Inductive Inference with SOLD-Resolution. In Proceedings
of the IJCAI’97 Workshop on Abduction and Induction in Al, pages 59 — 63, 1997. 156
A. Yamamoto. Which Hypotheses Can Be Found with Inverse Entailment? In Proceedings
of the Tth International Workshop on Inductive Logic Programming (LNAI 1297), pages
296 — 308, 1997. The extended abstract is in Proceedings of the IJCAI’97 Workshop on
Frontiers of Inductive Logic Programming, pp.19-28 (1997). 156, 163

A. Yamamoto. Logical Aspects of Several Bottom-up Fittings. In Proceedings of the 9th
International Workshop on Algorithmic Learning Theory (LNAI 1501), pages 158-168,
1998. 163

A. Yamamoto. An Inference Method for the Complete Inverse of Relative Subsumption.
New Generation Computing, 17(1):99-117, 1999. 163

A. Yamamoto. Revising the Logical Foundations of Inductive Logic Programming Systems
with Ground Reduced Programs. New Generation Computing, 17(1):119-127, 1999. 156

Conceptual Classifications Guided by a Concept
Hierarchy

Yuhsuke ITOH and Makoto HARAGUCHI

Division of Electronics and Information Engineering
Hokkaido University
N-13 W-8, Kita-ku, Sapporo 060-8628, JAPAN
makoto@db-ei.eng. hokudai.ac.jp

Abstract. Given a concept hierarchy and a set of instances of multiple
concepts, we consider the revision problem that the primary concepts
subsuming the instances are judged inadequate by a user. The basic
strategy to resolve this conflict is to utilize the information the hierarchy
involves in order to classify the instance set and to form a set of several
intermediate concepts. We refer to the strategy of this kind as hierarchy-
guided classification. For this purpose, we make a condition, Similarity
Independence Condition, that checks similarities between the hierarchy
and the instances so that the similarities are invariant even when we
generalize those instances to some concept at the middle. Based on the
condition, we present an algorithm for classifying instances and for mod-
ifying the concept hierarchy.

1 Introduction

We propose in this preliminary paper an algorithm to classify a set of instances
and to form new concepts based on the classification. Such a classification task
normally depends on what kinds of concepts and instances we concern. Both
the concepts and instances which we consider here are conceptual structure rep-
resented by some knowledge representation languages. One of important issues
about them seems related to the tasks for building and revising thesaurus or
MRD, machine readable dictionary. It is generally convinced that building the-
saurus is a hard task and needs much cost. Some support systems for reducing
such a task have been designed. For instance, a computational system DODDLE
[6] with the input WordNet, a kind of large MRD, has strategies to identify
some anomalies we encounter in applying WordNet to some particular domain
for which the MRD is not yet sufficiently developed. The anomalies found by
DODDLE are inadequateness of the subsumption relationship between terms
in a concept hierarchy involved in the dictionary. However, DODDLE does not
contain semantic information, such as types and roles, on conceptual terms, so
the detection of anomalies is much restricted.

This papaer is directly motivated by DODDLE, and tries to present a frame-
work for those systems revising concept hierarchy, using the semantic informa-
tion. For this purpose, we suppose a Classic [1, 2], particularly a CoreClassic
[2], as a knowledge representation language. Although much efforts have been

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 166-177, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

Conceptual Classifications Guided by a Concept Hierarchy 167

already paid for the studies on the learnabilities on those languages, the goal of
this preliminary paper differs from them at the following points:

1. A concept hierarchy is itself a knowledge source. At the same time, it is
the target of knowledge revision when we find some inadequateness in it. So
some part of hierarchy may be utilizable to revise and resolve anomalies in
the hierarchy itself. So a system we suppose in this paper revises knowledge
and refers it at the same time.

2. Normally, a concept hierarchy has the root or top node, meaning "every-
thing”. Hence in the worst case, some individual concept may be classified to
the top. However the classification has no information in this case. Similarly,
when the hierarchy has only too abstract concepts subsuming very particular
instances, the user also feels that something intermediate between them are
missed, although the subsumption is logically valid.

Taking these points into account, we present a framework with the following
invocation condition, a strategy and a key notion to solve the problem.

Given a concept hierarchy and a set of instances of multiple concepts, the
primary concepts subsuming the instances are judged inadequate by a user.

The basic strategy to resolve this conflict 1s to utilize the information the hier-
archy involves in order to classify the instance set and to form a set of severl
intermediate concepts, each from each class. We refer to the strategy of this
kind as hierarchy-guided classification.

For this purpose, we check similarities between concepts in the hierarchy and
the instances so that the similarities are invariant even when we generalize
those instances to some concept at the middle. This condition 1s called a
Similarity Independence Condition (SIC).

This paper i1s organized as follows. First in Section2, we give some definitions
about CoreClassic according to the literature [2]. In Section 3, we informally
introduce a classification problem and exemplify it. In Section 4, we present
Similarity Independence Condition and show some properties about it. In Sec-
tion b, we present a formal definition of classification task and a corresponding
algorithm, and show what classifications it actually performs. In Section6, we
summarize this paper.

2 Descriptions

We first define our language to describe concepts, CoreClassic, and introduce
the standard lattice operations for computing the least common subsumer and
unifications of two or more concepts, that are key to handle our space of concepts.

In CoreClassic, a description is formally a finite set of constraints for in-
dividual objects, and is used to denote a set of individuals satisfying all the
constraints in the description, where we suppose descriptions in the form of con-
Junctive normal forms without loss of generality. To describe various relation-
ships between individuals, CoreClassic provides three kinds of symbols: primitive

168 Yuhsuke Itoh and Makoto Haraguchi

class p1,pa, ..., roles r1,7rq, ..., and attribute a1, as,...,by,bs, ... Given a domain
of interpretation, p;, v, and a, are interpreted as a set of individuals, a binary
relations and a function, respectively. Then the follwing two types of constraints
can be asserted in the language:

Type Constraints:

(ALL (ri..7%) pe) (1)

meaning that an ry...7; filler y of # should be a member of the set p; denotes,
where r;...7;, 1s the composition of relations defined as r1...7;(z, y) < there exist
&= z1,%29,..., %m = y such that r;(z;, z;41) holds for 1 < j <m — 1, and we say
that y is a ry...ry filler of z if ry...r; (2, y) holds. As a first-order formula | (1)
can be written as

rig(2y) =y € pe (2)
Equality Constraints:

(ALL (ry..r4) (SAME_AS (a...a,) (by...bn)) (3)

meaning that, for any r...rg filler y of z, a1...a,(y) = an(...(a1(y)...) =
b (- (01(y)...) = b1...by (y) should hold. As in the case of constraint (1), (3) just

corresponds to

rrerg(2,y) = aran (y) = 010, (y). (4)

Note that just one free variable occurs in each constraint. Thus a description
1s given as a set of constraints for the unique free variable x:

D(x) = {consti(x), ...,consty(x)}.

For the free variable is clear from the syntax, D(x) is simply written as
D). Moreover, given an interpretation of first order logic, the extension of D 1s

defined as ext(D) = {z|for all ¢ € D ¢(z) holds}. For instance,

D(x)= { x € person, spouse(x) € person,
spouse(spouse(x)) = x, address(x) € address_name
address(spouse(x)) = address(x) } ,

In addition to these constrains, we have another constrain, address(spouse(x)) €
address_name, that is a logical consequence of D(z). In what follows, const(D) =
{const|D = const} denotes the set of all constraints, either type or equality con-
straint, derived from a description D.

In the case of descriptions with equality constraints, it is convenient to repre-
sent each description by a rooted directed graph, called a concept graph, for the
reasonig about equalities is naturally realized by path structures in the graph.
However, this paper is mainly concerned with an algebraic structure between
descriptions, so we omit the details.

Conceptual Classifications Guided by a Concept Hierarchy 169

2.1 Subsumption and Least Common Subsumer

Now let us briefly introduce notions of subsumptions, least common subsumers
and unifications. They are needed to analyze the relationships between descrip-
tions and to form a new concept from instance descriptions.

For two descriptions Ds, Dy, we say that Dy subsumes Dy (written as Dy =
D) af

Ve (if Dy(z) then Dy(2)). (5)

In what follows, the formula (5) is also denoted by Dy |= Dy, and we say that
D2 entails 1)y

Proposition 1. The following four conditions are equivalent.

(1) Dy = D,
(2) ext(Dq) Cext(Dy) for every interpretation.
(3) Dv C const(Dz) (i.e. if d € Dy then D2 =d)
(4) const(Dy) C const(Dx)

(i.e. if D1 |=d then Dy E=d)

From the proposition, when)y subsumes D, every constraint for 1)y is also
valid in 5. Hence, in order to check if 17 subsumes s, it suffices to check if ev-
ery d €)y is entailed by Ds. Although the concept graph representation quickly
performs the theorem-proving task of this kind, as we have already explained,
see the literature for details.

Based on the definition and analysis of subsumptions, we then define least
common subsumer (LCS, for short) .

Definition 2. Given two or more descriptions D;, we say that D = V; D; is the
least common subsumer of D; if the following conditions are satisfied:

(1) For any j, D; = D
(2) D = D' holds whenever D; = D for any j.

The construction of VD); is very similar to finite automata synthesis for
recognizing set intersection. However, it suffices to remind that VD, 1s really
constructable form D;. The proposition below 1s a direct consequence of the
definition and Proposition 1.

Proposition 3. const(D1) N const(Ds) = const(Dy V D)

Compared with the join operation Dy V D,, the unification (meet) Dy A D,
of D; is more direct, for it suffices to consider a set union Dy U D».

Proposition4. D U D,y has the following property:

1. D1UD2:>Dj forj=1,2.
2. IfD = D; (j=1,2) then D = Dy U D,

Thus Dy U D5 1s greatest among descriptions subsumed by both ;. Hence
Dy UDy= Dy ADs.

170 Yuhsuke Itoh and Makoto Haraguchi

3 Classification Problem and a Principle to Solve it

A concept hierarchy H is defined as a finite set of descriptions such that

(1) the empty description ¢ is in H.
2) no two descriptions in H are equivalent.
P q

(3) there exists a unique parent description [7(D), defined below, for each
DeH—-{¢}

The empty description ¢ denotes "everything”, since its extension always
denotes an interpretation domain. In other words, it 1s simply asserting that
there is no constraint to be checked. Moreover, two descriptions I); are said
equivalent if 1y = Dy and Dy = D;, and is normally written as [= Ds.
However in this paper, we do not distinguish syntactic equality =" and the
equivalence = for notational convenience.

For two descriptions Dy and Ds in H, we say that D 1s a predecessor of D
if Dy subsumes D, . Moreover D 1s called a parent of D4 if Dy 1s a predecessor
of Dy and if there exists no Dz € H — {1y, Dy} such that Dy = D3 = Dy. The
parent of D is denoted by I1(D).

A sequence ¢, Dy, D, ..., Dy = D of descriptions such that D; = II(Dj41)
just corresponds to a path from root ¢ to a description D in the hierarchy H,
and is written as path(D). From Proposition 1, we have

& C const(Dq) C ...const(D;) C eonst(D;q1)...

For no two descriptions in this sequence are equivalent, there exists at least one
d € Dj41 such that D; never entails d. Such d is understood as a new constraint
to form a successor D;;, from its parent D;. Intuitively speaking, we regard a
path from a root as a flow of constraint additions to form more specific concepts.
In fact, we have the following proposition.

Proposition 5. Suppose Dy = Dy. Then Ds = Dy U {e € Ds|D; [¢}

As a terminal case, we will get to an instance description of some concept.
One way to define a class of instances is to give a sublanguage to describe only
individual descriptions . However, in this preliminary paper, we does not make
such a restriction. So a (positive) training set S is simply defined as a set of
descriptions except those in .

An incremental learning algorithm, receiving a training set E.S of some single
description in the above sense, has been already studied in [2]. Instead, we present
here a classification problem to divide a given training set ES of descriptions
to a partition {ES;}. For each ES; C ES, we computes VE;. Thus it can be
regarded as a kind of conceptual classification of training instances or a problem
of learning multiple concepts from FS.

Conceptual Classifications Guided by a Concept Hierarchy 171

3.1 A Simple Example of Hierarchy-Guided Classification

This subsection presents a simple example to show why we consider hierarchy-
guided classifications.

Our concept hierarchy H has ¢ as a top concept. Hence, when nothing in H
except ¢ subsumes an instance £ € ES, F will be located under ¢ because of
the trivial subsumption E = ¢. Even when we have non-¢ description 1) sub-
suming [, one might think that) is not an adequate super concept to which F
belongs. The situation really depends on one’s intention and conceptual cogni-
tion about the subsumption between general and specific concepts. We consider
that the hierarchy is inadequate for such a person when he/she has a doubt to
the subsumption EF = D, even though the subsumption 1s logically valid. So the
purpose of classification of instances is to classify them and to generate an ade-
quate general description according to the classification. Although we can have
various criterion to search for a classification, we consider in this preliminary
paper a hierarchy-guided classification.

For instance, suppose we have a concept hierarchy shown by Figure 1 in
which the notion of (field) hockey is given. On the other hand, the notion of
ice hockey is not presently registered in H. Suppose furthermore we have in our
mind a description [H_H, "Ice Hockey in Hokkaido Island”, which will be an
instance description of ice hockey IH hidden in H. For the (field) hockey and ice
hockey have different playing field, IH and TH_H as well are not subsumed by
(field) hockey, but by skating.

The corresponding descriptions of skating, (field) hockey and ice hockey are
given in Figure 2, where A = By,..., B, and term(x) € py A ... A p are ab-
breivations of (A = Bi),...,(A = B,) and term(x) € pi, ..., term(z) € py,
respectively.

¢

\
//\

dance

/

skating
outdoor

hockey

hockey in Hokkaido

Fig. 1. A Sample Hierarchy

172 Yuhsuke Itoh and Makoto Haraguchi

Sport(x) = {x € sport}
S(x) = { x € sport, playingfield(x) € icerink, wear_shoe(x) € skating_shoe }

FH(x) = {
x € sport A ball_game, playing unit(x) € team,
playing field(x) € field, instrument(playing field(x)) € goal_net
playing_unit e player(x,y) = y € person, has_in_hand(y) € stick}

THH(x) = {
x € sport, playing_unit(x) € team,
activity_area(playing_unit(x)) € Hokkaido_lsland
playing field(x) € ice_rink, instrument(playing_field(x)) € goal net
playing_unit e player(x,y) =
y € person, has_in_hand(y) € stick, wear(y) € protector,
wear_shoe(y) € skating shoe }

Fig. 2. Sample Descriptions

Then our problem in this case is explained as follows:

Given a training set of instances including those of ice hockey in Hokkaido, our
classifier has to distinguish those from others like instances of "Ice Dance”
and so on, where the concept of ice dance 1s also invisible in H.

The training set £'S can contain instances of ”Ice Hockay in Kyushu Island”.
Our hierarchy H specializes the notion of hockey to "hockey in Hokkaido”.
According to Hierarchy-guided classification, the designation of Hokkaido
in the concept Hockay is regarded important, so our classifier should also
distinguish instances of ice hockay in hokkaido island from other including
those of ice hockay in Kyushu .

To solve the problem as in the above, a criterion we introduce here i1s a notion
of Stmilarity Independence Condition meaning that

a similarity between a concept in a hierarchy and instances of some target
class does not depend on each instance.

In the case of ice hockay in Hokkaido island, there may exist various indi-
vidual descriptions subsumed by the class description IH_H in Figure 2. Each
has each individual constraint added to IH_H. However, from the viewpoint of
hockey in Hokkaido in the hierarchy illustrated in Figure 1, such an individual in-
formation disappears, and only a similarity determined by the class descriptions
becomes visible.

Conceptual Classifications Guided by a Concept Hierarchy 173

4 Similarity Independence Condition and a Classification
Algorithm

First we define Similarity Independence Condition (SIC, for short) and then
present an algorithm based on it.

Before imntroducing SIC, we have to answer what is a similarity between con-
cepts. In this preliminary paper, we simply consider that a similarity 1s a set
of constrains shared by two descriptions. Since const(Dq V D2) = const(Dh) N
const(Dz) holds, LCS, Dy V Ds, is regarded to show the similarity.

Definition 6. (Similarity Independence Condition) For a description D
and FS; C ES, ES; is said to satisfy SIC with respect to Dy, if BV D, = E'V D,
holds for any E and £’ in ES;.

Proposition 7.
(A) SIC is closed under generalizations. That is, if D = D’ and ES; satisfies
SIC w.r.t. D, then SIC is also valid for ES; w.r.i. D',
(B) The following two conditions are equivalent:
(1) ES; satisfies SIC w.r.t. D.
(2) (VES)VD=EVD forany £ € ES;

Proof. Part A: From the assumption, we have const(D’) C const(D) and
const(E1) Neconst(D) = const(E») Nconst(D) for any Fq, Ey € ES;. Hence the
conclusion 1s a direct consequence of set operation.

Part B: (2) = (1) is trivial. To prove (1) = (2), let J = DV E. Then, clearly
D = J and EF = J for any £ € ES;. Therefore ¥ = VES, = J. Hence
J=EVD=(VES)VD= JvD=J Thus we have J = (VES;) v D. Q.E.D.

4.1 Building new hierarchy from instance description set satisfying

SIC

From the proposition, when E.S; satisfies SIC w.r.t. D, we can construct a new
concept VFES; that has the same similarity with D as its instances ES; have.
When D appears in a concept hierarchy H, VES, a new concept generated from
FS; satisfying SIC, 1s to be put in H based on the following analysis.

First recall that there exists a path from root ¢ to D.

D=Dp,=>D_ 1= ..=>D=>Dy=¢ (6)
o C const(Dq) C ... C const(Dy) (7)

Since D, = D= EV D =(VES:)V D, we have
const(E vV D) C const(D) = Uj<rconst(D;)

Then let us consider the most specific Dy, such that const(Dy,s) C const(EV D).
That 1s, VES; = FV D = D,,s. From this simple argument, it follows that
II(VES,) = Dp,s whenever we add VES; to our hierarchy H.

174 Yuhsuke Itoh and Makoto Haraguchi

casel: Dys = ¢. In this case, the remaining constraints in VFES; are spread
over the series of constraints, and is not kept in one D; as a "chunk” of
constraints. Therefore, VES; 1s a direct successor of root concept.

case2: D,,, 18 neither ¢ nor D = Dj. For both D = D, and VFES; has D,
as the common predecessor, VES; appears in / U {VES;} as a "brother
concept” of D = D). For instance, given 1) as the hockey concept and E S
of some ice hockey instances, VFES; is located just under the sport concept
in Figure 1, not under the concept outdoor, for it does not subsume £V D.
Note that VES; 18 not necessarily the ice hockey concept. If ES; keeps some
individual information incident to some subclass of ice hockey, then VE.S, 1s
the subclass located under the ice hockey concept which is still invisible in
this case.

caseld: D,,, = Dy. This case clearly put VES; just under D. That i1s, VES; 1s
a “specialization” of D. As an example, suppose we have hockey concept as
D and E'S; of some university hockey instances. Then VES;, a subclass of
umversity hockey, 1s directly located under the hockey concept.

4.2 How to collect instances satisfying SIC

This subsection describe how to collect instances satisying SIC. For this purpose,
suppose we have a description D in H and a set { £S;} of instances. It is often the
case that each F € FS; shows each similarity with respect to). The similarity
DV FE will represent some aspect of DD which E is concerned with. So in order
to keep the condition SIC, simply gather all such instances concerning the same
aspect of D. Formaly we have the following definition.

Definition 8. Given a description D € H, an equivalence relation ~p is defined
as:

ElND EQ@D\/ElzD\/EQ

We use this equivalence relation to divide instance set showing the same
similarity with a given description in the hierarchy.

4.3 Similarity Index

From the argument given in the preceding subsections, it turn out that, when
every instance in £S5 have at least one shared constraint with 1), we can classify
ES into subgroups, compared with). So the remaining problem is to find such
alDin H.

As is shown in the series of constrains (7), a path from the root provides us a
growing sets of constrains, the series of descriptions in /. So the corresponding
similarities between descriptions on the path and a given instance E increase,
as we go down H on the path:

¢ Cconst(EV Dy) C...Ceonst(EV Dg_1) Ceonst(EV Dg)....

Conceptual Classifications Guided by a Concept Hierarchy 175

In the case of ice hockay in Hokkaido island, any instance of hoth ice hockey
in Kyushu island and one in Hokkaido island will show the same similarity to
the (field) hockey description. They are therefore classified into the same group
according to SIC. However, H in Figure 1 further specializes the notion of hockey
to 1ts subconcept, hockey in Hokkaido 1sland. Thus the hockey in Hokkaido and
any instance of ice hockey in Hokkaido show the same and stronger similarity.
This enables us to distinguish Hokkaido and other area even in the case of ice
hockey. Formally we define s-index for each instance description to associate it
with a concept in H so that the corresponding similarity is maximal.

Definition 9. s-index (similarity index) Given a concept hierarchy I/ and
an instance description F, a description D € H 1s called a s-index of I if

(1) DV E £,
(2) there exists at least one d € DV F such that =(I1(D)V E = d), and
(3) no successor of D in H satisfies the condition (2).

The constraint d € 1) in the conditon (2) is a constraint that is newly added
to form D from its parent description [/ (D). Clearly, const(lI (D)) # const(D).
In additon, the condition (3) requires that const(D V E) = const(D' Vv E) for
any successor [of D in H.

4.4 Multiple occurrences of s-indices

Basically, for each instance £ € ES, s-index D of E is firstly calculated, and
then equivalence relation ~p 1s used to classify D-indexed instances.

However, in general, there may exist several s-indices for an instance de-
scription E. For such an £ and its s-indices Dy, ..., D, we consider a system of
similarities between the s-indices and the instance.

Weak Identity: FV Dq,...,FEV Dy can be a weak identity of things
with respect to H in the following sense.

1. E is something showing the similarities £V Dy, ..., EFV Dy to H, and
2. Ev Dy, ..., EV D, are all the similarities we can observe from H.
Thus everything we can know from the viewpoint of H is described by
the £V Dy, ..., EV Dy. Consequently, if there exists another E’ with the
same s-indices and the corresponding similarities E'V D; = E' v D; (for
all j), there exists a strong evidence showing that F and £’ are grouped

into the same one.

Based on this intuition, we make the following definition.

Definition 10. Suppose we have a hierarchy H and an instance description
set ES. For Ey,Fs € ES, Fy and Fy are said equivalent w.r.t. H, written as
By ~ Eo,if (1) s-index(FE,) = s-index(Fy) and (2) for each D € s-index(£}),
E1 ~p E3 holds, where s-index(FE) denotes the set of all s-indices of £.

The following proposition just corresponds to Proposition 7.

176 Yuhsuke Itoh and Makoto Haraguchi

Proposition 11. Let [E] be an equivalence class {E' € ES|E’ ~ FE}. Then
VIE] ~ E' for any £’ € [E]. Thus, [F)] satisfies SIC for any shared s-index D of
[E].

Proof. The conclusion directly follows from a fact that, for each shared s-index
D of any £ in [F], V[E]V D = E' vV D holds.

In the case with multiple s-indices {Dy,, Di}, we have k paths from the
root

De=D} =D} = .= D= D=9, (8)
where 1 < £ < k. For each path (8), we can find the most specific description

D;ns(ﬁ) such that const(Dzm(ﬁ)) C const(F;) for any E; € [E]. Thus, new de-
(€)

scription V[E] is subsumed by Dzm . Since this argument holds for each £, we

have V[E] = /\,gDzm(j). Furthermore, for Dzm(j) 1s a generalization of Dy, we
can conclude the argument by the following proposition.

Proposition 12. Let [E] be an equwalence class of IS with the s-indices { Dy, ..., Dy }.
Then there exists a family of their generalizations { Dy, ..., Dy} such that V[E] =
Dy AN Dy.

Proposition 13. Given ES, the set of all training instances, Let {[E1], ..., [En]}
be the partition determined by the equivalence relation ~. Then, for any descrip-

tion D € H such that DV (V[E;]) # ¢, [E;] satisfies SIC with respect to D.

4.5 An Algorithm

Now an algorithm satisfying our requiement is clear. It simply calculates the
equvalence classes {[F]|F € FS}, and form a new description V[F] for each
equivalence class [E]. From the propositon 13, [F] satisfies SIC.

To characterize the behavior of our algorithm, we first introduce the class
of possible classifications guided by a hierarchy. Intuitively speaking, such a
class is obtained by forgetting or removing some constraints added on paths in
the hierarchy. For the generalization operation 1s considered to realize such an
operation, we first define a class descriptor (' as a finite set of generalizations of
concepts in H. That is, C is defined as a finite set {Dy, ..., D,,} such that D; =
D; for some D; € H. Then, we have the following definition of classifications
guided by a hierarchy.

Definition 14. A classification guided by a hierarchy H is defined as a finite set
{Ch, ..., Gy, } of class descriptors C; = {Djy, ..., Dj,, } such that, for any ' € ES,
there exists a unique class descriptor C subsuming %, that is, ¥ = /\5{? € C}.

From the definition, we can classify I/ € F/S according to which class descrip-
tor subsumes F. In other word, F7 and Es are regarded equivalent and classified
into the same group whenever they are subsumed by the same and the unique
descriptor in C'. Note that we allow subsumptions between class descriptors. For

Conceptual Classifications Guided by a Concept Hierarchy 177

instance, in the case of hockey example, the concept of ice hockey 1n Hokkaido
1sland 1s subsumed by the concept of ice hockey and that any instances of ice
hockey whose activity areas are not Hokkaido island are uniquely subsumed by
the ice hockey concept.

Now we are ready to show what classification our algorithm computes.

Theorem 15. Given a classification {C4,...,C,} guided by H, Fy and F- are
subsumed by the same descriptor C; whenever Ey ~ Fs.

In other words, a partition {[£]|E € ES} obtained by ~ is always a refinement
of the partition defined by the classification {C, ..., C}, } guided by H.

Proof. First let us define wid(#), for each £ € ES| as
wid(E) = {EV D;|D; € s-index(E)}.

Clearly, F = Awid(FE) holds and wid(F) is a class descriptor. Now, suppose
that we have a classification guided by H and that two Fy and Fy in FS are
subsumed by distinct descriptors €7 and (5 in the classification, respectively.
Then, from the proposition 16 below,

Ej = /\wid(Ej) = /\Cj (9)

holds for j = 1,2.

To prove the theorem, 1t suffices to show that E; ~ FE5 never holds. Suppose
to the contrary £y ~ FE5. This directly implies Awid(£1) = Awid(F3). Then, by
the subsumptions (9), E; = Awid(£;) = AC; holds for ¢ # j. Clealy this contra-
dict to the assumption that a class desciptor subsuming an instance description

1s unique. Q.E.D.

Proposition 16. Suppose F/ = AC, where C s a class descriptor. Then,
Awid(E) = AC' holds.

Proof. Suppose F = AC' = Dy A ... A D,,. This implies that, for any D—j, there
exists a s-index D of F such that D = D;. Thus, there exists (E'V D) € wid(FE)
such that Awid(E) = (E V D) = D;. For D; is arbitrary chosen, we have
Awid(E) = AC. Q.E.D.

4.6 Present experiment

An experimental system has been already implemented and tested for a small set
of descriptions [4] under some restriction on CoreClassic. The hockey example
has been tried, and the system successfully generates the right LCS and places
it at an adequate position in the hierarchy.

The system uses some simple similarity measure to select the best s-index
D when more than two s-indices are found for an instances E. This is because,
the existence of multiple s-indices are troublesome both in i1ts semantics and

178 Yuhsuke Itoh and Makoto Haraguchi

accountability to users. It is not an easy task to analyze and explain the class
descriptor wid(F) invisible in the hierarchy H. wid(F) actually concerns both
generalizations and multiple paths representing contexts in a sense. So it seems
that we need more strong theory for the case of multiple s-indices.

On the other hand, the measure used in that experiment 18 designed so that
it grows when IV 1) becomes larger. Moreover it decreases when the number
of descriptions in 1) not shared by instance £ increases even when the shared
part is large one. Although the measure is simple, it shows a good performance,
provided the concepts in the hierarchy has adequate abstraction levels, compared
with the instances.

5 Concluding Remarks

There still remain a lot of things to do. The most important thing seems related
to the level of abstraction:

In the case of MRD, a lot of word concept are stored in it. It could be a case
that an instance subsumes a concept. (Normally a concept subsumes instances.)
Such a situation may happen when MRD contains a lot of words whose meaning
1s very concrete and when users feed the system instance descriptions at very
abstract level. Thus it seems to make some parameter or to have a selection
method to choose descriptions at some adequate level of abstractions or to cut
off description that are too much concrete or abstract. Particularly, according
to the definition of equivalence relation ~p allows us to have a singleton group
of instances. Such a case will happen if the individual descriptions have very
particular properties that are also shared with some very concrete ”concept” in
our hierarchy. In such a case, we have too much refined partition that is almost
of no use. Another way to cope with this problem seems to use k-MMG, an
algorithm to find a minimal descriptive pattern to explain positive instances. For
k-MMG has been originally designed so as to solve multiple covering problem,
the technique will be also used for conceptual classifications of multiple concepts.

References

1. M.Frazier & L.Pitt: CLASSIC Learning, Machine Learning, Vol. 25, No. 2-3, pp
151-193, 1996.

2. W.W.Cohen & H.Hirsh: The Learnability of Description Logics with Fquality Con-
straints, Machine Learming, Vol. 17, No. 2-3, pp 169-199, 1996.

3. H.Arimura, T.Shinchara & 5.0tsuki: Polynomial Time Algorithm for Finding Finite
Unions of Two Tree Pattern Languages, LNAI 659, pp 118-131 Springer, 1993.

4. Y.Itoh: Knowledge Revision of Conceptual Hierarchy base on a Classification Master
Thesis, Hokkaido University, 1999 (in Japanese).

5. T.Yamaguchi: A Legal Ontology Refinement Environment using a General Ontology,
Proc. Workshop on Application of Logic Programming to Legal Reasoning, pp 176—
185, 1994.

This article was processed using the IFTEX macro package with LLNCS style

Learning Taxonomic Relation by Case-based
Reasoning

Ken Satoh

Division of Electronics and Information, Hokkaido University
N13W8 Kita-ku, Sapporo, 060-8628, Japan
ksatoh@db-ei.eng.hokudai.ac. jp

Abstract. In this paper, we propose a learning method of minimal case-
base to represent taxonomic relation in a tree-structured concept hier-
archy. We firstly propose case-based taxonomic reasoning and show an
upper bound of necessary positive cases and negative cases to represent
a relation. Then, we give an learning method of a minimal casebase with
sampling and membership queries. We analyze this learning method by
sample complexity and query complexity in the framework of PAC learn-
ing.

1 Introduction

This paper proposes a method of learning a minimal casebase to represent a
relation of objects in a tree-structured concept hierarchy. Suppose that we would
like to learn “eat” relation between CARNIVORA and FOOD using the taxo-
nomic structure in Fig. 1. We assume that once an instance of the leaf class in
the above structure satisfies/dissatisfies a property, then it applies to all the in-
stance in the class since the leaf class denotes the objects which satisfy the same
property. Suppose that we observe that an instance of LEO eats CHICKEN.
Since nothing prevents to believe that every instance of CARNIVORA eats ev-
ery instance of FOOD, we believe so. Suppose that we observe that an instance
of AILUROPODA does not eat PORK even if he is hungry. Then, this is a coun-
terexample of our current belief. We need to revise our brief. One way of revising

ANIMAL THING

CARNIVORA
FOOD

PANTHERA UBSA //\
MEAT PLANT
LEO TIGRIS AILUROPODA ARCTOS

CHICKEN BEEF PORK BAMBOO NUT
Fig. 1. Taxonomic Structure

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 179-193, 2000.
© Springer-Verlag Berlin Heidelberg 2000

180 Ken Satoh

is to make an experiment for other instances. Since LEO is PANTHERA which
is one hierarchy down from CARNIVORA, we check whether an instance of the
other class of PANTHERA, which is, TIGRIS eats PORK. We find that the in-
stance of TIGRIS eats PORK and therefore, we now believe that every instance
of PANTHERA eats every instance of FOOD. By iterating this kind of observa-
tions and experiments, we can learn exact “eat” relation between CARNIVORA
and FOOD.

In this paper, we formalize this phenomena by case-based reasoning. In order
to perform classification task by case-based reasoning, we introduce a similarity
measure and we accumulate negative cases and positive cases in a casebase. We
can check a tuple of instances in the relation by deciding whether the nearest
case to the new tuple belongs to the relation.

In [Satoh98] and [Satoh00], we use a set-inclusion based similarity for a case
represented as a tuple of boolean-valued attributes.

In [Satoh98], we have shown that for every boolean function f, we can rep-
resent a boolean function f in a casebase whose size is bounded by |[DNF(f)] -
(1 + |CNF(f)|) where |IDNF(f)|(JCNF(f)|, resp.) is the size of a minimal
DNF(CNF resp.) representation of f. Specifically, we have shown that a boolean
function defined by a casebase with our similarity measure is a complement of
a monotone extension [Bshouty93, Khardon96] such that a set of positive cases
in the casebase is called basis in [Bshouty93] and negative cases are assignments
in the monotone extension.

In [Satoh00], we have proposed an approximation method of finding a criti-
cal casebase and analyze the approximation method in PAC (probably approxi-
mately correct) learning framework with membership query. Let n be a number
of propositions and € < 1, § < 1 be arbitrary positive numbers. If [DNF(f)| and
[CNF(f)|is small, then we can efficiently discover an approximate critical case-
base such that the probability that the classification error rate by the discovered
casebase is more than € is at most §. The sample size of cases is bound in poly-

11
nomial of —, 5 IDNF(f)| and |CNF(f)| and necessary number of membership
€

queries is bound in polynomial of n, [DNF(f)| and |[CNF(f)|.

In this paper, we extend these results so that we learn a relation of ob-
jects in tree-structured concept hierarchy. Specifically, we analyze case-based
representability of relations and propose an approximation method of a critical
casebase which is a minimal casebase representing the considered relation.

There are works on applying case-based reasoning for taxonomic reason-
ing [Bareissg8, Edelson92]. [Bareiss88] takes a heuristic approach of learning a
relation between objects. [Edelson92] uses case-based reasoning for computer-
aided education to identify correct generalization. However, as far as we know,
there are no theoretical results on computational complexity on these applica-
tions of case-based reasoning.

In this paper, we use the least common generalized concept to which two
objects belong for similarity measure between these objects. Moreover, for simi-
larity between two tuples of objects, we use set-inclusion based similarity over the
least common generalized concepts. These similarity measure is not numerical-

Learning Taxonomic Relation by Case-based Reasoning 181

based similarity. The idea of non-numerical similarity has been suggested by vari-
ous people [, , , 1.1 ,]
firstly propose set-inclusion based similarity measure for legal case-based rea-
soning and [| and | | pay attention to properties of these
non-numerical similarity measure. This paper can be regarded as an application
of these research to taxonomic reasoning.

The structure of this paper is as follows. In Section 2, we define taxonomic
reasoning and in Section 3, we propose CBR which performs taxonomic reasoning
in CBR and in Section 4, we discuss case-based representability of relations and
in Section 5, we propose a learning method of a minimal casebase to represent
a relation and in Section 6, we summarize our contributions and discuss future
work. The proofs are found in Appendix.

2 Taxonomic Reasoning in Tree-structured Concepts

O is a set called a set of objects. C is a finite set called a set of concepts. We
introduce a tree T called concept tree each of whose node is associated with an
element in C. The root of the tree is denoted as top(T) and we define a function
parent which maps an element ¢ in C except top(T') into another element in C
which is a parent node of ¢ in T'. Conversely, a function child maps an element of
c except leaf nodes into a set of child nodes of c. The height of the tree denoted
as height(T) is defined as the largest number of edges in a path between top(T')
to any leaf node in 7' and width of the tree denoted as width(T') is defined as
the number of leaf nodes.

We say that ¢y is more general than c, (written as ¢, < ¢1) if there
is a path between ¢; and ¢, in a concept tree such that parent(c,) =
Cm—1, parent(cm—1) = Cm—2, parent(cs) = cq, parent(cz) = ¢1. We write ¢, < ¢1
if ¢,y < €1 Or ¢, = 7.

We call concepts associated with the leaf nodes of T' leaf concepts. We define
a function class from O to leaf concepts so that each object in O belongs to a
leaf concept.

Let ¢; and ¢y be concepts. We define lcge(cr, ca) (called the least common
generalized concept w.r.t. ¢1 and c2) as the concept ¢ such that there is no less
general node ¢’ than ¢ such that ¢’ is more general than c¢; and cy. We also define
gege(er, co) (called the greatest common generalized concept w.r.t. ¢; and cg) as
cy if ¢ < ¢9 and as ¢y if ¢5 < ¢; and undefined otherwise.

Let c1, c2 and c3 be concepts. We say ¢y is more or equally similar to co than
to c3 if lege(er, e2) = lege(er, c3). For example, in Fig. 1, we have the following.

1. LEO is more or equally similar to TIGRIS than to AILUROPODA, since
lege(LEO, TIGRIS) = PANTHERA and lcgc(LEO, AILUROPODA) =

CARNIVORA and PANTHERA <X CARNIVORA.
2. CHICKEN is more or equally similar to PORK than to BAM BOO,

since lege(CHICKEN, PORK) = MEAT and
lege(CHICKEN, BAMBOO) = FOOD and MEAT < FOOD.

182 Ken Satoh

Let 01,092,035 be objects. We say o1 is more or equally similar to os
than to o3 denoted as lcgc(o1,02) = lege(o1,03) where lege(o,0') denotes
lege(class(o), class(0)).

We call an n-ary tuple of objects in O™ a case. Let O be a case. We denote
the i-th component of the tuple O as O[i].

We define lcge(Oq, O2) as

(lege(01[1], O2[1]), lege(On[1], O2[1)), ...lege(Or1[n], O2[n)))

We also define class(O) as (class(O[1]), ..., class(O[n])).

Let O1, O3 and O3 be cases. Then, we say O is more or equally similar to
Os than to Oz denoted as lcge(O1, O2) <X lege(Oq, Os) if for each i (1 < i < n),
lege(Onli], O2li]) = lege(Onli], Osli]).

We have the following important property for <.

Proposition 1. Let 0,071,052 be cases. lcge(O1,0) = lege(O92,0) iff
lege(O1, 02) = lege(O, Os).

We define a language which expresses a taxonomic relation. We introduce n
variables x1, ..., z,, which represent the position of arguments in the relation. An
atomic formula has the one of the following form:

— x =X ¢ where z is one of 1, ...,x, and c is the name of a concept in C which
means that x is less or equally general than c.

— a special symbol, T which means truth.

— a special symbol, F which means falsity.

A formula is the combination of an atomic formula and A and V in the usual
sense. We denote a set of all formulas as L.

Let us regard an atomic formula as a proposition. Then, £ can be regarded as
negation-free propositional language. Then, we can define a disjunctive normal
form (DNF) of a formula in £ as a DNF form of the translated propositional
language. Similarly, we also define a conjunctive normal form (CNF) of a formula
in £ as well.

We can also simplify a formula along with the following inference rules (to-
gether with usual propositional inference rules):

((x 2c)) ANP)V ...V ((x =X em) ADP) and child(C) = {c1, ..., cm }
(x <)\

((z < top(T)) A P)
@

(x < ¢) AP and child(C) = {c1,...,cm}
(x 2c)) ANP) V...V ((z 2 em) AND)

x =1V =<cand lege(er, o) = ¢y

T <c

Learning Taxonomic Relation by Case-based Reasoning 183

x =1 Az = ce and gege(er, c) is ¢1

T =<c

x =1 Az = o and gege(eq, ¢) is undefined
F

For example, in the above “eat” relation, we would have the following cumber-
some DNF representation:

((:z: < LEO)A(y X CHICKEN)) V ((x < LEO) A (y < BEEF))
V ((x X LEO) A (y < PORK))
V ((x < TIGRIS)A (y <= CHICKEN)) V ((x < TIGRIS) A (y < BEEF))
V ((x < TIGRIS) A (y < PORK))
V ((x = AILUROPODA) A (y = BAMBOO))
V ((x = ARCTOS) A (y < CHICKEN))
V ((x = ARCTOS) A (y < BEEF))
V ((x < ARCTOS) A (y X PORK))
V ((x = ARCTOS) A (y < NUT)).

or the following compact DNF representation:

((x x PANTHERA) A\ (y < MEAT))
V ((z = AILUROPODA) A (y < BAMBOO))
V ((x = ARCTOS) A (y = MEAT)) V ((x < ARCTOS) A (y < NUT)).

Let F be a formula in £. We define [DNF(F)| as the smallest number of
disjuncts in logically equivalent DNF forms to F' induced by the above inference
rules and we define |CNF(F)| as the smallest number of conjuncts in logically
equivalent CNF forms to F' as well.

Let O be a case and F be a formula of £. We say that O satisfies F' denoted
as O |= F if one of the following conditions hold.

1. If F is an atomic formula z; < ¢, then class(O[i]) =< e.
2. If F is of the form G A H, then O = G and O
3. If F is of the form GV H, then O =G or O = H.

We define ¢(F) = {0 € O"|O = F}.

Definition 2. Let R C O™. We call R an n-ary relation over objects if it satisfies
the condition that a case O is in R if and only if every case O’ € O™ such that
class(0') = class(0) is in R.

The above condition for R expresses that cases has the same properties if
every class for each component of these cases belongs to the same leaf class.

Definition 3. We say that a set of cases S consists of representatives if for every
O € S, there is no O’ € S such that O # O’ and class(O) = class(O").

A subset of S, S’ is a representation set of S if S satisfies the following
conditions:

184 Ken Satoh

— S consists of representatives.
— S is mazimal in terms of set-inclusion among subsets of S consisting of
representatives.

We say that a formula F' € L represents R or F is a representation of R if
¢(F) = R. Note that any relation over cases can be represented as a disjunctive
normal form as follows.

Definition 4. Let R be an n-ary relation and S be a representation set for R.
We denote the formula \/ 5 o((z1 = class(O[1]])) A ... A (z, = class(O[n]]))) as
DISJ(R).

We define |DNF(R)| as |DNF(DISJ(R))] and |CNF(R)| as
|CNF(DISJ(R))|.

Tt is obvious that for any relation R, DISJ(R) represents R. Conversely, for
any formula F € L, ¢(F') expresses a relation.

3 Case-based Taxonomic Reasoning

Definition 5. Let CB be a set of cases which are divided into CB" and CB™.
We call CB a casebase, CB' a set of positive cases and CB™ a set of negative
cases respectively.

We say a case O is positive w.r.t. CB if there is a case O, € CB" such that
for every negative case Ong € CB™, lcgc(O, Ong) 2 lege(O, Oo).

Note that lcge(O,Ong) A lege(O,Opr) does not imply lege(O, Oor) <
lege(O, Oyy) since < is a partial order relation.

In the above definition, “O is positive” means that there is a positive case
such that O is not more or equally similar to any negative case than to the
positive case.

Definition 6. Let CB be a casebase (CB',CB~). We say that n-ary relation
Rep is represented by a casebase CB if Rep = {O € O™|O is positive w.r.t. CB}.

Conversely, any relation R can be represented by a casebase (CBT,CB™)
where CB™ is a representation set of R and CB™ is a representation set of O™ —R.
Therefore, we can perform “taxonomic reasoning” by case-based reasoning.

From Proposition 1, the following holds.

Proposition 7. Let CB be a casebase (CBT,CB™). A case O is positive if
and only if there is a case Oo, € CBT such that for every case On, € CB~,
lege(Ooky Ong) 2 lege(Oor, O).

Definition 8. Let S be a set of cases and O be a case. We say that S is reduced
w.r.t. O if for every O' € S, there is no O” € S such that O' # O” and
lege(0,0") = lege(0,0).

Let S be a set of cases and S’ be a subset of S and O be a case. S’ is a
reduced subset of S w.r.t. O if S’ satisfies the following conditions:

Learning Taxonomic Relation by Case-based Reasoning 185

— 8 is reduced w.r.t. O.
— 8’ is mazimal in terms of set-inclusion among subsets of S having reduced-
ness w.r.t. O.

We say that a subset of S, NN (O, S), is a nearest reduced subset of S w.r.t.
O if it is a reduced subset of the following set w.r.t. O:
{0’ € S| There is no O” € S s.t. lege(0,0") < lcge(0,0)}

For a positive case O, we only need the most similar negative cases to O, in
order to represent a set of cases which O, makes to be positive. Furthermore,
it is sufficient to have only one equally similar negative case among the most
similar negative cases to represent a set of cases which O, makes to be positive.

Therefore, we only need any arbitrary nearest reduced subset of CB~ w.r.t.
each positive case to represent the same relation as the following proposition
shows.

Proposition 9. Let CB be a casebase (CBT,CB~). Let CB =
(cB™, Uo,,ccn+ NN(Ook,CB™)) where NN(Oo,CB™) is any arbitrary
nearest reduced subset of CB~ w.r.t. Og, € CBT. Then, Ren = Repr -

4 Case-based Representability

In this section, we discuss an upper bound of minimal casebase size to represent
a relation.

Lemma 10. Let R be an n-ary relation over objects and CB* be a subset of R
and D1 V...V Dy, be a DNF representation of R. Suppose that for every D;, there
exists Oo, € CBY such that Ouy, € ¢(D;). Then, R = Rep where CB = (CB1,R).

For the next lemma, we need the definition of Ollo, and PNN(O,R) defined as
follows:

Definition 11. Let O and O’ be cases. We define a set of cases O]}, for I(1 <
I < n) such that class(O[l]) # class(O'[l]) as follows. O” € O|L,, if O" satisfies
the following condition:

— parent(lege(O'[l], 0"(1])) = lege(O'[1], O[1])
= lege(0'[), 0"[j]) = lege(O'[4], Olfl) for j # 11 <j < n).

OlL, is a set of the nearest cases to O’ among cases whose lcge with O
differs from lege(O’, O) in the I-th concept. Note that the number of elements
of a representation set of O]}, for I-th object is at most width(T).

In the “eat” relation, if O = (04, on) where class(os) = AILUROPODA
and class(ony) = NUT, and O’ = (or,oc) where class(or) = LEO and
class(oc) = CHICKEN, then O}, = {{or,onvB)| class(or) = TIGRIS
and (class(onyvg) = NUT or class(onyp) = BAMBOO) }, and O|%, =
{{oava,opvp)| (class(oava) = AILUROPODA or class(ogya) = ARCTOS)
and (class(opyp) = BEEF or class(opyp) = PORK) }.

186 Ken Satoh

Definition 12. Let R be an n-ary relation over objects.

We say that a subset of R, PNN(O',R), is a pseudo nearest reduced negative
subset w.r.t. O iff it is a reduced set of the following set w.r.t. O:

{O € R| For every (1 <1< n) s.t. class(O[l]) # class(O'[l]),

for every case O” € O|L,,, 0" € R}

Note that for every pseudo nearest reduced negative subset w.r.t. a case
O', PNN(O',R), there is a nearest reduced set of R w.r.t. O, NN(O', R) s.t.
NN(O',R) C PNN(O',R), and conversely, for every nearest reduced set of R

w.r.t. O') NN(O',R), there is a pseudo nearest reduced negative subset w.r.t. a

case O', PNN(O',R) s.t. NN(O',R) C PNN(O',R).

Lemma 13. Let R be an n-ary relation over objects. Suppose that Dy A ... A Dy,
be a CNF representation of R and O be a case. Then, for every pseudo nearest
reduced negative subset w.r.t. a case O, PNN(O,R), [PNN(O,R)| < k.

Corollary 14. Let R be an n-ary relation over objects and Dy A...ADy, be a CNF

representation of R and O be a case and NN(O,R) be a nearest reduced subset
of R w.r.t. O. Then, INN(O,R)| < k. Especially, INN(O,R)| < |CNF(R)|.

By Lemma 10, Proposition 9 and Corollary 14, we have the following theorem
which gives an upper bound of representability of n-ary relations.

Theorem 15. Let R be an n-ary relation over objects. Then, there exists a
casebase CB = (CB,CB™) such that Res = R |CBT| < |DNF(R)|, [CB™| <
IDNF(R)|-|[CNF(R)| and |CB| < |[DNF(R)|(1+ |CNF(R)|).

5 Learning Critical Casebase

We firstly give a definition of a critical casebase.

Definition 16. Let R be an n-ary relation over O™ and CB be a casebase
(CBY,CB™). CB is critical w.r.t. R if CB satisfies the following conditions:

— R="TRes
— There is no casebase CB' = (CB’+,CB’7> such that R = Rep and cBt C
CB" and CB'~ CCB~ and CB' # CB.

The above definition means that if we remove some of cases from CB, the new
casebase no longer represents R.

The following results(Theorem 18 and Lemma 20) are related with a minimal
set of negative cases and positive cases.

Definition 17. Let R be an n-ary relation and CB be a casebase (CB",CB™)
such that Reg = R. CB™ is a set of minimal negative cases w.r.t. CBT and R if
there is no casebase CB’ = (CB",CB'~) such that CB’~ € CB~ and Rep = R.

The following theorem concerns about necessary and sufficient condition of
a set of minimal negative cases given CB" and R.

Learning Taxonomic Relation by Case-based Reasoning 187

Theorem 18. Let R be an n-ary relation and CB be a casebase (CBT,CB™)
such that Reg = R. CB™ is a set of minimal negative cases w.r.t. CBT and

R if and only if CB~ = Up,, ccp+ NN(Ook, R) where NN (Oor,CB™) is any
arbitrary nearest reduced subset of CB~ w.r.t. Oy, € CBT.

The above theorem intuitively means that if CB™ and a set of negative case CB/~
represents a relation R, we can reduce CB~ down to UOuk coBt NN (Op,CB™).

Definition 19. Let R be an n-ary relation and CB be a casebase (CB",CB™)
such that Rep = R. CBT is a set of minimal positive cases w.r.t. R if there is no
casebase CB' = (CB'Y,CB'~) such that CB'" ¢ CB' and CB'~ is any arbitrary
set of negative cases and Rep = R.

The following lemma shows a sufficient condition on a set of minimal positive
cases.

Lemma 20. Let R be an n-ary relation and CB be a casebase (CB*,CB~) such
that Res = R. Suppose for every Oup € CBT, Opr & R(czﬁ—{ouk}ﬁ)' Then,

CB" is a set of minimal positive cases w.r.t. R.

Now, we propose an approximation method of discovering a critical casebase.
In order to do that, we assume that there is a probability distribution P over
O™. We would like to have a casebase such that the probability that the casebase
produces more errors than we expect is very low.

The algorithm in Fig. 2 performs such an approximation. The algorithm is
a modification of [Satoh00]. Intuitively, in the algorithm we try to find counter
examples by sampling and if enough sampling is made with no counter examples,
we are done. If we find a positive counter example then we add it to CB" and
if we find a negative counter example then we try to find a “nearest” negative
case to a positive case from the found negative counter example.

In the algorithm, O € R? expresses a label whether O € R or not. If O € R
then the label is “yes” and otherwise “no”.

The following lemma gives an upper bound for a number of positive counter
cases.

Lemma 21. Let R be an n-ary relation and D1V ...V D\pnpr)| be a DNF
representation with a minimal size [DNF(R)| of R. Suppose that the situation
that O € R and O & Rep occurs during the execution of FindCCB(4, €). Then,
for every 1 < k < |DNF(R)|, if there exists Oo, € CBY such that O € ¢(Dy,)
then O & ¢(Dy,). This situation happens at most |DNF(R)| times.

The following lemma gives an upper bound for a number of negative counter
cases.

Lemma 22. Let R be an n-ary relation over objects. Suppose that the situation
that O ¢ R and O € Ryo,,3y,c-) occurs for some Oy € CB*" during the

execution of FIndCCB(4, €). Then, there exists some O' € PNN(Ouk, R) such
that lege(O', Oor) < 1ege(O, Opr) and O' & CB™. This situation happens at most
|CNF(R)| times for each O,x € CB™.

188 Ken Satoh

FindCCB(5, ¢)
begin
CBY =0 and CB~ :=0 and m :=0

1. O is taken from O™ according to the probability distribution P and
get (0,0 € R?) as an oracle.
2. fO € R and O € Ricp+ ey, then
(a) cBT :=cBTU{O}
(b) m :=0 and Goto 1.
3. IfO ¢ R and O € Rep+ cp-), then
for every Ook s.t. O € Ry0,,1,c8-)s
(a) Opmin = pminNG(O, O,)
(b) CB™ :=CB~ U{Opmin}
(¢) m:=0 and Goto 1
4. m:=m+1
5 If m>= %ln% then
output CBT and UODkGCBJr NN (Opk,CB™)
where NN (O,,CB™) is any set among the nearest reduced
subsets of CB~ w.r.t. O. € CBT.
else Goto 1.

end

pminNG(0, O,y)
begin

1. For every 1 < I < n st. O[] # O.ill], we take any arbitrary
representation set of Ollook and denote the representation set as
S.

2. For every O’ € S,

(a) Make a membership query for O’.
(b) If O' ¢ R then O := O’ and Goto 1.
3. output O’. /* O' € PNN(Oox, R) */

end

Fig. 2. Approximating a critical casebase

By the above two lemmas, an upper bound for a number of negative counter
cases is [DNF(R)| - [CNF(R)|.

Let Ri AR, be a difference set between R; and R (that is, (Ry N Re) U
(R1NR2)).

The following theorem shows that we can efficiently find an approximation
of a critical casebase with high probability if [DNF(R)|,|CNF(R)|, width(T)
and height(T') is small.

Theorem 23. Let R be an n-ary relation over objects and T be a concept

1 1
tree. The above algorithm stops after taking at most (Z In 5) IDNF(R)| - (1 +

Learning Taxonomic Relation by Case-based Reasoning 189

|CNF(R)|) cases according to P and asking at most n? - width(T) - height(T) -
IDNF(R)|-|CNF(R)| membership queries and produces CB with the probability
at most § such that P(RARcg) > e.

The next theorem shows that output from FindCCB(4, €) is an approxima-
tion of a critical casebase.

Theorem 24. Let CB be an output from FindCCB(d,¢€). If Res = R, CB is a
critical casebase w.r.t. R.

6 Conclusion

The contributions of this paper are as follows.

1. We show that for every relation R with a concept tree T, in order to represent
R, an upper bound of necessary positive cases is |[DNF(R)| and the upper
bound of necessary negative cases is [DNF(R)| - |CNF(R)].

2. We give an learning method of a critical casebase and we analyze computa-
tional complexity of the method in the PAC learning framework and show

1.1
that the sample size of cases is at most (; In 5) IDNF(R)|-(1+|CNF(R)])

and necessary number of membership queries is at most n? - width(T) -
height(T) - [DNF(R)| - |CNF(R)|.

We would like to pursue the following future work.

1. We would like to extend our method to handle multiple-inheritance.
2. We would like to extend our language to include negations and extend our

method to learn a formula in an extended language.
3. We would like to generalize our results for more abstract form of case-based

reasoning.

Acknowledgements I thank Prof. Akihiro Yamamoto from Hokkaido Univer-
sity on discussion of proofs and useful comments and anonymous referees for
instructive comments of the paper. This research is partly supported by Grant-
in-Aid for Scientific Research on Priority Areas, “Research Project on Discovery
Science”, The Ministry of Education, Japan.

References

[Ashley90] Ashley, K. D.: Modeling Legal Argument: Reasoning with Cases and Hypo-
theticals MIT press (1990) 181

[Ashley94] Ashley, K. D., and Aleven, V.: A Logical Representation for Relevance Cri-
teria. S. Wess, K-D. Althoff and M. Richter (eds.) Topics in Case-Based Reasoning,
LNAT 837 (1994) 338-352 181

[Bareiss88] Bareis, R.: PROTOS; a Unified Approach to Concept Representation, Clas-
sification and Learning. Ph.D. Dissertation, University of Texas at Austin, Dep. of
Computer Sciences (1988) 180

190 Ken Satoh

[Bshouty93] Bshouty, N. H.: Exact Learning Boolean Functions via the Monotone
Theory. Information and Computation 123 (1995) 146-153 180

[Edelson92] When Should a Cheetah Remind you of a Bat? Reminding in Case-Based
Teaching. Proc. of AAAI-92 (1992) 667 — 672 180

[Matuschek97] Matuschek, D., and Jantke, K. P.: Axiomatic Characterizations of
Structural Similarity for Case-Based Reasoning. Proc. of Florida AI Research Sym-
posium (FLAIRS-97) (1997) 432-436 181

[Khardon96] Khardon, R., and Roth, D.: Reasoning with Models. Artificial Intelligence
87 (1996) 187-213 180

[Osborne96] Osborne, H. R., and Bridge, D. G.: A Case Base Similarity Framework.
Advances in Case-Based Reasoning, LNAI 1168 (1996) 309 — 323 181

[Satoh98] Satoh, K.: Analysis of Case-Based Representability of Boolean Functions by
Monotone Theory. Proceedings of ALT’98 (1998) 179-190 180

[Satoh00] Satoh, K., and Ryuich Nakagawa: Discovering Critical Cases in Case-Based
Reasoning (Extended Abstract). Online Proceedings of 6th Symposium on Al and
Math, http://rutcor.rutgers.edu/ amai/AcceptedCont.htm (2000) 180, 187

Appendix: Proof of Theorems

Proof of Proposition 1 Let O[i], O1[i], Oz2[i] be i-th component of O, O1, Ox.
Suppose that lege(Oq]i], O[i]) < lege(O2]i], Oi]). Since O [i] = lege(On]i], Ofi)),
0O1i] = lege(O2li],O[i]) by transitivity. Since Oq[i] =< lcge(Osli], O[i)),
lege(On]i], O2[i]) = lege(O2li], Ofi]) = lege(Oli], O2[i]). The converse holds in
a similar way.

“Iege(O4 11} O[i])) < Lege(Oali], OL]) iff Lege(Or[i], Osli]) < Lege(O, Osli))
holds for every (1 < i < n) and the proposition holds.

Proof of Proposition 7 By the original definition that O is positive and by
Proposition 1.

Proof of Proposition 9 We need to prove the following lemma.

Lemma 25. Let CB be a casebase (CB*,CB™). Let O}, € CB~ and CB' =
(CB*,CB'™) where CB'~ = CB™ —{O,,,}. If for all Oy, € CB", there exists
Ong eCB'™ s.t. ngC(Ong, Ook) = ngC(O;“Lga Oak)- Then Rep = Rep: -

Proof: Clearly, Reg C Rep:. Suppose that Rep # Rep. Then, there exists
some O such that O € Rep and O € Repr. This means:

— VO, € CB"30,, € CB™ s.t. lcge(Opg, O) = lege(0),, O).
— 3O,k € CBYYO,,4 € CB'™ s.t. lege(Ony, O) £ lege(Ouk, O). Let O’ be such
Ook.-

Then, lcge(Oy,,, O) = lege(O,,, O).

By Proposition 1, this means lcge(O,,,, O,,) = lege(O, O,,;). However, since
there exists O,y € CB'™, lcgc(Ong, OL)) = lcge(O;,,,0.,) by the condition

ng’
of Oy,,, there exists O,y € CB'", lcge(Ong, O;,) = lege(O, O),). This implies

Learning Taxonomic Relation by Case-based Reasoning 191

lege(Ong, O) = lege(O),., O) again by Proposition 1 and leads to contradiction
with O € Repr.
Proof of Proposition 9 (continued)

Suppose Ong & Uop,,cent NN(Ook, CB™). Then, for every O € CB™,
Ong & NN(Oor,CB™). This means that there exists O” € CB™ s.t.
lege(Ook, O") = lege(Ook, Ong). Therefore, by Lemma 25, Res = Resr
where CB” = (CBY,(CB~ — {Oy,})). Even after removing O,, from CB,
Uo,,.ecn+ NN(Ook, (CB™ = {Ong})) = Uop,, ccn+ NN (Ook, CB™), since other-
wise, Opg was in Uookecg+ NN(Oo,CB™). Therefore, we can remove all O,
such that O,y ¢ UOok cen+ NN (O, CB™) from CB~ without changing Reps and
thus, Rep = Repr -

Proof of Lemma 10 Since R C Rep always holds, Reg € R. Therefore,
to prove the Lemma, it is sufficient to show that for every O € R, there is
some positive case Oy, € CB' such that for every Ong € R, lege(Ong, Ook) £
lege(O, Opp).

Suppose O € R. Then, there exists a disjunct D of the DNF representation of
R such that O € ¢(D). This means that for every i(1 < i <n), if x; < ¢ appears
in D, class(O[i]) < c. Let O,x € CBT be a case satisfying O,x € ¢(D). This
also means that every i(1 < i < n), if x; < ¢ appears in D, class(Oy[i]) < c.
Therefore, if x; =< ¢ appears in D, lcge(class(O]i]), class(Oorli])) = c.

Suppose that there exists O,, € R such that lcge(Opng, Oor) =< lege(O, Opr).
This means that for every i(1 < i < n),

lege(class(Onglil), class(Ooxli])) < lege(class(Oli]), class(Ookli))).

Therefore, every (1 < ¢ < n), if x; =< ¢ appears in D,
lege(class(Ongli]), class(Oox[i])) < ¢ and this implies class(Ongli]) = c. Thus,
Ong € R and this leads to contradiction. Therefore, for every O € R, there is
some positive case Oy, € CBT such that for every Ong € R, lege(Ong, Ook) £
lege(O, O,). This means R C Rep.

Proof of Lemma 13 Let D be any clause in the above CNF representation.
We define a case Opin (D) € R w.r.t. a clause D in the above CNF representation
of R as follows. For every j(1 < j < n),

— lege(class(Omin(D)[j]), ¢) = parent(c) if x; < ¢ appears in D.
— class(Omin(D)]j]) = class(O[j]) if z; < ¢ does not appear in D.

Suppose that O’ € R, but O’ is not equal to any of the above Oy (D).
Since O’ € R, there is some clause D in the above CNF representation such that
O’ ¢ ¢(D). Then, for every j(1 < j < n), class(O'[j]) £ cif z; < ¢ appears
in D. In other words, for every j(1 < j < n), ¢ < lcge(class(O'[j]),c) if ; < ¢
appears in D.

Since O’ is not equal to any of the above O (D), at least either of the
following is satisfied:

— there exists j(1 < j < n) s.t. parent(c) < lege(class(O'[j]),¢) if x; < ¢
appears in D.

192 Ken Satoh

— there exists j(1 < j < n) s.t. class(O'[j]) # class(O[j]) if z; < ¢ does not
appear in D.

This means that lcgc(Omin(D),0) < lcge(O',0). Then, for any O” s.t.
1cgc(Omin(D),0) =< lege(0”,0) < lege(O',0), O" & ¢(D). Therefore, O’ is
not included in any of pseudo nearest negative subsets of w.r.t. O.

Let PNN(O,R) be a pseudo nearest negative subset w.r.t. O. Then, the
above means that there exists a reduced subset S of {Oy,in(D)|D is a clause in
the above CNF representation of R} w.r.t. O such that PNN(O,R) C S. Since
S| < k, [IPNN(O,R)| < k.

Proof of Corollary 14 For every nearest reduced set of R w.r.t. O,

NN(Ook,R), there is a pseudo nearest reduced negative subset w.r.t. a case

O', PNN(Ook, R) s.t. NN(Ook, R) € PNN(Opp, R). Therefore, by Lemma 13,
|NN(OOkaR)| < |PNN(00]€3R)| < k.

Proof of Theorem 18 We need the following Lemma.

Lemma 26. Let R be an n-ary relation and CB be a casebase (CBT,CB™) such
that Reg = R. Then, U, cepr NN(Ook, R) CCB™.

Proof Suppose that O, € UOok cent NN (Ook, R), but Oy ¢ CB™. Then, there
is Oy, € CBT such that Ong € NN(Oo, R). Since O,,, € CB~ but O,, € R,
there exists O € CB™ (therefore O € R) such that lcge(O, Opr) < lege(Ong, Oor).
This contradicts that O,y € NN(Opk, R).

Proof of Theorem 18 (continued) By Lemma 26, UOok ccB+ NN(Ou,R) C

CB™. Suppose that CB™ contains some Oy, other than UookeCB+ NN (O, R).
We consider two disjoint situations.

— Suppose that for all Og, € CBT, there exists O;,, € CB™ s.t. lege(O,,,, Ook) =
lege(Ong, Ook). Then, by Lemma 25, Regr = R where CB” = (cB*T,cB'™ —
{Ong4}). Therefore, it contradicts minimality of CB™.

— Suppose that there exists O,; € CB" such that for every O;Lg e CB,

lege(Oy,4, Ook) 2 1ege(Ong, Oox). This means that Oy is in NN (O, R).

ng’ YA

This leads to contradiction and thus CB~ =g, cept NN (Ook; R).

Proof of Lemma 20 Suppose that there is a casebase CB' = (CB'",CB™)
such that Res = R and CB'T ¢ CBY and CB'™ is any arbitrary set of negative
cases.

Then, Rep = R(CB/+,§>' Suppose that O,;, € CBT and O, ¢ CB'". Then,

since CB'" c CB+_{O()I€}7 R(CB’*,ﬁ) C R(CB*—{OOk},ﬁ)' Therefore, Oor & Rep:
and Rep # R. Thus, it leads to contradiction.

Proof of Lemma 21 Suppose that O € ¢(Dy,) for some Dy, such that O, €
CB™. Then, in order to make O ¢ R, we need to have a negative case Ong €CB™
such that lcgc(Ook, Ong) = lege(Oor, O). Since O € ¢(Dy) and Ogy € CB™*, for
every i(1 < <) such that a; < ¢ appears in Dy, O[i] < ¢ and O,[i] =< ¢. This

Learning Taxonomic Relation by Case-based Reasoning 193

means that lcge(Oox[i], Oi]) < ¢. Thus, lege(Ookli], Ongli]) < ¢ and Oyp4li] < ¢ if
x; = ¢ appears in Dy. This means O, € ¢(Dy) and thus O,, € R and it leads
to contradiction. Therefore, O & ¢(Dy).

Since every time the above O is found, we add O to CB" at Step 2 in
FindCCB(J, ¢), the number of unsatisfied Dy, is reduced at least 1. Therefore,
the above situation happens at most |[DNF(R)|.

Proof of Lemma 22 Every time the above O finds, we search
pminNG(0, Oy). Let Oppmin = pminNG(O,Ou). Then, Oppmin is in
PNN (O, R). If Opmin were in CB™ already, O could not be a negative counter
example.

Since we add Oppmin to CB~ at Step 3b in FindCCB(J, €), the number of un-
added PNN (O, R) is reduced at least 1. Since [PNN (O, R)| < |CNF(R)|
by Lemma 13, the above situation happens at most |CNF(R)| times for each

Ook-

1.1
Proof of Theorem 23 We only need to get at most — In 5 examples according
€

to P to check whether a counter example exists or not, in order to satisfy the
accuracy condition. Since the number of counter examples (positive or negative)
is at most [DNF(R)|- (14 |CNF(R)|) by Lemma 21 and Lemma 22, we only

1.1
need to get at most (= In g) “IDNF(R)|-(1+|CNF(R)|) samples as a total.
€

Let CB be (CBT,CB™). For each negative counter example O and for every
Ook such that O € Ryyo,,y.c5-), we compute an element, Oppmin, in a pseudo
nearest reduced negative subset w.r.t. Oy, by pminNG(O, O,y).

Since the number of elements in a representation set of Ollook for each [such
that class(O[l]) # class(Oyk[l]) is at most width(T'), the number of possible
cases checked for one iteration in pminNG (O, O,y) is at most n - width(T).

Since the number of iteration in pminNG (O, O,y) is at most n - height(T),
we will make a membership query at most n?-width(T) - height(T) times to find
Opmin. Since the number of negative counter examples is at most |[CNF(R)| -
IDNF(R)|, we need at most n? - width(T) - heght(T) - [CNF(R)| - [DNF(R)]
membership queries.

Proof of Theorem 24 Let CB be (CB",CB™). Since we can guarantee that
for every O1, € CBT, Ou ¢ Rcs+—{0,,},cB-), there is no subset CB'™" of CBT

such that Rep = R where CB' = (CB'",CB~) by Lemma 20.

If we can find all the PNN (O, R) by using pminNG(c, Opp), then we

can get NN (Ook, R) by choosing O,y € PNN(Oor, R) such that there is no

O,,, such that O, € PNN(Oo, R) and lcge(Oy,,, Ook) < lege(Ong, Ook). At
the output step in FindCCB(J,¢), we perform such a selection. Therefore, if
R = Reg then, CB~ = Uookecm NN(O,,CB™) and this is a minimal set of

negative cases w.r.t. CB and R by Lemma 26.

Average-Case Analysis of Classification
Algorithms for Boolean Functions
and Decision Trees

Tobias Scheffer

University of Magdeburg, FIN/IWS
P.O. Box 4120, 39016 Magdeburg, Germany

scheffer@iws.cs.uni-magdeburg.de

Abstract. We conduct an average-case analysis of the generalization
error rate of classification algorithms with finite model classes. Unlike
worst-case approaches, we do not rely on bounds that hold for all pos-
sible learning problems. Instead, we study the behavior of a learning
algorithm for a given problem, taking properties of the problem and
the learner into account. The solution depends only on known quantities
(e.g., the sample size), and the histogram of error rates in the model class
which we determine for the case that the sought target is a randomly
drawn Boolean function. We then discuss how the error histogram can
be estimated from a given sample and thus show how the analysis can
be applied approximately in the more realistic scenario that the target is
unknown. Experiments show that our analysis can predict the behavior
of decision tree algorithms fairly accurately even if the error histogram
is estimated from a sample.

1 Introduction

In the setting of classification learning which we study in this paper, the task
of a learner is to approximate a joint distribution on instances and class labels
as well as possible. A hypothesis is a mapping from instances to class labels; the
(generalization, or true) error rate of a hypothesis h is the chance of drawing a
pair of an instance z and a class label y (when drawing according to the sought
target distribution) such that the hypothesis conjectures a class label h(x) which
is distinct from the “correct” class label y. While we would like to minimize this
true error rate, it is only the empirical error on the training sample (i.e., a
set of pairs (z;,y;) of fixed size) which we can measure and thus minimize. A
learner minimizes the empirical error within a prescribed model class (a set of
potentially available hypotheses).

Most known analyses of classification algorithms give worst-case guarantees
on the behavior of the studied algorithms. Typically, it is guaranteed that the
performance of the learner is very unlikely to lie below some bound for every
possible underlying problem. Consequently, such bounds tend to be pessimistic
for all but very few underlying learning problems.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 194-207, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

Average-Case Analysis of Classification Algorithms 195

In an attempt to close the gap between worst-case guarantees and experimen-
tal results, a number of average-case analyses have been presented which predict
the expected behavior (over all possible samples) of a learning algorithm for a
given problem. Average-case analyses have been presented for decision stump
learners [7], k-nearest neighbor [11,12], and linear neural networks [3] as well as
for one-variable pattern languages [13] and naive Bayesian classifiers [10,9].

PAC- and VC-style results impose mathematical constraints on the range of
possible error rates of classification algorithms which hold for all possible learn-
ing problems. Complementing this mathematical view, average-case analyses can
be seen as reflecting a science-oriented perspective. The learning agent is con-
sidered as a system the behavior of which is to be described as accurately as
possible. The primary benefit of average-case analyses is their ability to predict
the behavior of a learning algorithm in a specific scenario much better than
worst-case analyses; their primary drawback is their dependence on properties
of the learning algorithm and the learning problem which correspond to the the
initial state of the system. In a typical classification setting, these properties are
unknown.

In Sections 2 and 3, we present computationally efficient average-case anal-
yses that predict the behavior of classification algorithms with finite hypothesis
languages. In Section 2 we assume that the training set error of the returned hy-
pothesis is known and quantify the expected generalization error of hypotheses
with that empirical error. In Section 3 we assume that the learner finds the train-
ing set error minimizing hypothesis in the model class (but this least training
set error does not have to be known) and quantify the expected generalization
error of that hypothesis. Both analyses depend on the histogram of error rates in
the model class. This joint property of model class and learning problem counts
how often each possible error rate occurs in the model class.

In Section 4, we derive the exact error histogram for the case that the sought
target is a randomly drawn function and the instances are governed by the uni-
form distribution. Similar settings are commonly studied in average-case analyses
(e.g., [7]). In Section 5, we discuss how the error histogram can be estimated
from an available sample. We can then apply the analysis approximately for
arbitrary targets. We present experiments that indicate that, even without any
background knowledge on the target, we can still obtain fairly accurate results.

Let us clarify some notational details. Let H; be some finite model class —
i.e., a set of available hypotheses. For instance, H; could contain all decision
trees with i leaf nodes. h € H; is then a hypothesis and maps instances z to
class labels y. A classification problem is given by an (unknown) density p(z,y).
The generalization error rate of h with respect to this problem (which we want
to minimize) is then e(h) = [>, Uh(@), y)p(z,y)dz, where £(-,-) is the zero-one
loss function. Given a finite sample S consisting of m independent examples,
drawn according to p(z,y), the empirical (or sample) error rate of h is e(h) =
L waes L(h(z),y). It is important to distinguish between generalization error
€ (which we really want to minimize) and empirical error e (which we are able
to measure and minimize using the sample) throughout this paper.

196 Tobias Scheffer

2 Generalization Error Given the Empirical Error

Suppose that we have a given model class H; and a sample size m. The model
class H; is the particular learning bias of the learning algorithm, the behavior
of which we would like to predict. Every hypothesis h € H; has a fixed but un-
known generalization error ¢(h) with respect to the (unknown) learning problem
p(z,y). When we draw a sample S governed by p(z,y)™, then each hypothesis
incurs an empirical error rate e(h). Suppose that we put the hypotheses into
boxes labeled with the possible empirical error rates %, %, ooy pr. We call the
set of hypotheses in box e Hf. Each box with label e has its own distribution
of generalization error rates in it (over all possible samples S and over the hy-
potheses contained in the box). We will write this distribution p(e(hf)le, H;, m).
We would expect most of the hypotheses with empirical error rate of % to have
fairly small generalization error rates, although the majority of them is likely to
incur a nonzero generalization error. On the other hand, most hypotheses with
empirical error rate 7 will also incur a rather high true error (depending on the
sample size and other factors) which will in most cases still be lower than one.

A learning algorithm conducts a search in the prescribed model class H; and
comes to some hypothesis h* with empirical error e (not necessarily the globally
smallest empirical error in H;). If we assume that all hypotheses in H; with
identical empirical error e are equally likely to be found by the learner, then hF
can be treated as if it were drawn from H¢ (the box of hypotheses with empirical
error e) under uniform distribution. Consequently, p(e(h$)|e, H;, m) governs the
generalization error of our learning algorithm when the observed empirical error
of the returned hypothesis is e. When we can quantify p(e(h$)|e, H;,m), then we
can also quantify the distribution which governs the generalization error of the
hypothesis returned by our learner.

We can read p(e(hf)le, H;,m) as “P(generalization error | empirical error)”.
The intuition of our analysis (which is a simplified version of the analysis dis-
cussed in [15]) is that application of Bayes’ rule implies “P(generalization error
| empirical error) = P(empirical error | generalization error)P(generalization
error)/ normalization constant”. Note that P(empirical error | generalization
error) is simply the binomial distribution. (Each example can be classified cor-
rectly or erroneously; the chance of the latter happening is ¢; this leads to a
binomial distribution.) We can interpret “P(generalization error)”, the prior in
our equation, as the histogram of error rates in H;. This histogram counts, for
every € the fraction of the hypotheses in H; which incur an error rate of €. Let
us now look at the analysis in more detail.

Let h! be a hypothesis drawn from Hf at random under uniform distribu-
tion. In Equation 1, we only expand our definition of hY. Then, in Equation 2,
we decompose the expectation by integrating over all possible error rates e. In
Equation 3, we apply Bayes’ rule. 7(e|H;) is the histogram of error rates in H;. It
specifies the probability of drawing a hypothesis with error rate e when drawing
at random under uniform distribution from H;.

Average-Case Analysis of Classification Algorithms 197

E(e(h{)le, Hi,m)
= E(e(h)le(h) = e,h € H;,m) (1)
:/ h) = ele(h) = e, h € H;,m)de 2)
P(e(h) = e|e() =¢€,h € H;,m)n(e|H;)
- [W) =elhe Hom) ©

Since, over all €, the distribution p(e(h) = e|e(h) = e, H;,m) has to integrate
to one (Equation 4), we can treat P(e(h) = elh € H;,m) as a normalizing
constant which we can determine as in Equation 6.

/p(e(h) =c¢€le(h) =e,h € H;,m)de =1 (4)
P(e —e| h) =¢,h € H;,m)n(e|H;)
‘i’/ (h) = e|h € Hy,m) de=1 (5)

& Pe(h) = e|h € H;,m) = /P(e(h) =ele(h) = ¢,h € H;,m)n(e|H;)de (6)

Combining Equations 3 and 6 we obtain Equation 7. In this equation, we
also state that, when the true error € is given, the empirical error e is governed
by the binomial distribution which we write as Ble, m](e).

[eBle,m](e)w(e|H;)de
| Ble,m](e)w(e|H;)de

E(e(hf)le, Hi,m) = (7)

We have now found a solution that quantifies E(e(hF)|e, H;,m), the ezact
expected generalization error of a hypothesis from H; with empirical error rate
e for a given learning problem p(z,y). Equation 7 specifies the actual error rate
for the given learning problem rather than a worst-case bound that holds for
all possible learning problems. The additional information of 7 (e| H;) makes this
possible.

3 Analysis of Exhaustive Learners

In this section, we assume that the learner can be guaranteed to find the hy-
pothesis in H; that minimizes the empirical error (breaking ties by drawing at
random). On the other hand, we do not require the empirical error rate of the
resulting hypothesis to be known (so the learner does not have to be invoked
before the analysis can be applied). We can predict both the resulting empiri-
cal error rate and the resulting generalization error from the histogram of error
rates and the number of hypotheses. The analysis is a simplification of an analy-
sis proposed by Scheffer and Joachims [19]. Let us first sketch how the resulting

198 Tobias Scheffer

empirical error rate on the training set can be predicted without running the
learning algorithm at all.

The empirical error rate of a single hypothesis with generalization error € is
governed by the binomial distribution B[m,€]. The least empirical error rate in
H; is e if no hypothesis achieves an empirical error which is lower than e. Let us
make the simplifying assumption that the empirical error rates of two or more
hypotheses are independent given the corresponding true error rates. Formally,
P(/\hjeHi e(hj)le(h;)) = theHi P(e(hj)|e(h;)). Now we can approximate the
chance that no hypothesis incurs an error of less than e as [[,cp, P(e(h) >
ele(h),m). Note that the histogram w(e|H;) tells us how many hypotheses have
error rates of € (for each €). Let us now look at the analysis in more detail.

In order to determine the expected true error (expected over all samples) of
hE (the hypothesis that minimizes the empirical error within H;), we factorize
the hypothesis h that the learner returns (Equation 8). Since we assume the
learner to break ties between hypotheses with equally small empirical error at
random, all hypotheses with equal true error rates € have an exactly equal prior
probability of becoming hiL . We re-arrange Equation 8 such that all hypotheses h,
with true error € are grouped together. 7(e| H;) is again the density of hypotheses
with error rate e among all the hypotheses in H; (with respect to the given
learning problem). This takes us to Equation 9.

B Him) = [) PE = Bl m)a (®)
- / eP(hE = hle, Hy,m)m(e| H)de ()

Let Hf = argming g {e(h)} be the set of hypotheses in H; which incur
the least empirical error rate. Note that H} is a random variable because only
the sample size m is fixed whereas the sample S itself (on which H} depends)
is a random variable. In order to determine the chance that h. (an arbitrary
hypothesis with true error rate €) is selected as hiL, we first factorize the chance
that h. lies in H}, the empirical error minimizing hypotheses of H; (Equation
10). A hypothesis that does not lie in H} has a zero probability of becoming h’
(Equation 11). In Equation 12, we factorize the cardinality of |H;|. When this
set is of size n, then each hypothesis in H} has a chance of % of becoming hF
(the learner breaks ties at random) (Equation 13). In Equation 14, we factorize
the least empirical error e and, in Equation 15, we simply split up the conjuction

(like p(a,b) = p(a)p(bla)).
P(h¥ = he, Hiym)

= P(h} = h|H;,m,h. € H})P(h € H}) (10)
+P(h¥ = h|H;,m,h. & H)(1 — P(h. € H}))
= P(h¥ = h|H;,m,h. € H})P(h. € H}) (11)

= P(h{ = he|H;,m,h. € H,|H| =n)P(h. € H},|H;|=n) (12)
n

Average-Case Analysis of Classification Algorithms 199
1 * *
=Z—PheHZ,|HZ-|=n> (13)
n
—ZZ P(h. € H},|H}| :n|e(h€) =e)P(e(he) = ele,m) (14)

—ZZ P(he € Hf|e(he) = e,m)P(|H}| = n|he € H} ,e(he) =€)
P(e(he) = ele,m) (15)
By inserting Equation 15 into Equation 9 we get Equation 16.

E(e(hF)|H;, m)
/ <ZZ (|H;| = n|h. € H} e(he) =€) (16)
P(he € H}|e(he) = e,m)P(e(h.) = e|e,m)7r(e|Hi)> de

Assuming that the chance of the set of empirical error minimizing hypotheses
HY being of size n when h, is known to lie in this set does not depend on
which hypothesis is known to lie in this set (formally, P(|H;| = n|hy € H}) =
P(|H;| = n|hy € H}) for all hy, hy) we can claim that ¢ = P(|H;| = n|h. €
H;}, e(he) =€) is constant for all he.

Equation 16 specifies the expectation of €(hl). The density p(e(hF)|H;, m)
has to integrate to one (Equation 17). Equation 16 takes us from Equation 17 to
Equation 18 in which we use the abbreviation ¢ for P(|H}| = n|h6 € H} e(he) =
e). ¢ is therefore determined uniquely by Equation 19.

[plettt) = el myde =1 (17)
o /ZZ %c Ph. € H:|e(h.) = e,m)
P(e(he) = ele,;m)m(e|H;)de = 1 (18)

Ge= (| X P € Hijeth) = e.m)Peth) = e|e,m)7r<ele->de) (19)

Combining Equations 16 and 19 and stating that the empirical error is gov-
erned by the binomial distribution (given the true error) we obtain Equation
20.

E(e(hi)|Hi,m)
_ J (5, Plh. € H:le(l) = e;m)Ble, m(e)n(el) de
[>. P(he € H}|e(h.) = e,m)Ble, m](e)m(e|H;)de

200 Tobias Scheffer

Let us now tackle the last unknown term, P(h. € H}|e(h.) = e,m). A hypothesis
he (with true error rate €) lies in H} when no hypothesis in H; achieves a
lower empirical error rate. There are |H;| many hypotheses; their true error
rates are fixed but completely arbitrary — i.e., they are neither independent nor
governed by some identical distribution. These |H;| error rates constitute the
density m(e|H;) which measures how often each error rate e occurs in H; (we
have already seen this density in Equation 9). Each of these hypotheses incurs
an empirical error rate that is by itself governed by the binomial distribution
B[m,e€]. Let us assume that the empirical error rates of two or more hypotheses
are independent given the corresponding true error rates as discussed earlier in
this section. Formally, P(A\, ¢y, €(hj)le(h;)) = [15,cn, Pe(h;)le(h;)). Now we
can quantify the chance that no hypothesis incurs an error of less than e which
makes our hypothesis h with e(h) = e a member of H}. For all but extremely
small H; (formally, pHil p|H1'|*1) we can write this chance as in Equation 21.
Note again that the empirical error (given the true error) is governed by the
binomial distribution (Equation 22).

P(h. € H}le(he) = e,;m) = [[Pe(h) > ee’,m)!H:/m(€/1H:) (21)
|H;|m(e' | Hy)
= > B¢, m](e) (22)
e’ e'>e

What have we achieved so far? Equations 20 and 22 quantify the expected
generalization error of hl for a given problem in terms of three quantities: the
number of hypotheses in model class H; (which can typically easily be com-
puted), the sample size m (which is known), and the histogram of error rates
in H;, m(e|H;). Note that, for Equations 20 to give us the expected error e(hl),
it is not necessary to actually run the learner and determine e(hl). Let us also
emphasize that we are not talking about bounds on the error rate for a class of
possible problems. Subject to the mentioned independence assumptions, Equa-
tions 20 and 21 quantify the expected generalization error of an empirical error
minimizing hypothesis for a particular, given learning problem. When only the
sample size m and |H;| are given, it is impossible to determine where in the
interval specified by the Chernoff bound the actual error rate lies. Additionally
given the density m(e|H;), however, we can determine the actual density that
governs the generalization error, and thereby also the expected generalization
error.

4 Learning Boolean Functions

In order to apply the analysis, the histogram of error rates m(e|H;) has to be
known. Let us determine m(e|H;) when the target is a randomly drawn Boolean
function over attributes x; through xj; and the instances are governed by the
uniform distribution. For each target function fj the target distribution py(z,y)

Average-Case Analysis of Classification Algorithms 201

is then XI when fi(x) = y and 0 otherwise. Let H; contain all Boolean functions
over the first 4 attributes. Model classes H; to Hy_; contain 1 through k£ — 1 of
the relevant attributes; the target function does usually not lie within the model
class and the classifier can only approximate the target. Model class Hj, contains
all relevant attributes. Model classes Hy1 through H,, contain all relevant plus
additional irrelevant attributes.

Each target function fj (with corresponding target distribution pg(z,y))
yields some error histogram my(e|H;, fr) = mr(€|H;,pr(z,y)). When P(f) is
the uniform distribution as stated above, then the expected resulting error can
be described by Equation 23, which is just Equation 20 averaged over all f.
The subscript Eyy, sy indicates that now both fj and the sample S are random
variables.

E,,sy(e(hp)|Hi,m) (23)
f Z P he E}I*| (h) :evm)B[evm](e)ﬂ-(dHiafk))de
TS, P(h € B le(h,) = e.m) Ble-ml@m(@Hy. fiyde /O
|H;|m(e'|Hy)

where P(h. € H}|le(h.) = e,m) = H Z Ble',m](e) (24)

e’ e'>e

In order to further reduce Equation 23 we need to distinguish two cases.

(1): i < k. fy splits the Boolean instance space into 2¥ instances whereas
the hypotheses split the space only into 2¢ subspaces each of which is assigned
only one class label. Hence, 2~ instances with potentially distinct class labels
fall into the same subspace. Since fj is governed by the uniform distribution,
assigning one class label (drawn uniformly from the set {0,1} to 2¥~% instances
will misclassify a number v of instances governed by the binomial distribution
B[2*=% 1], Let vy through vy: be the numbers of instances misclassified in sub-
spaces 1 through 2 when a randomly drawn class label is assigned to the whole
subspace. The vector (vy,. .., i) is governed by (B[2F %, %])2 as specified more
detailedly in Equation 25.

Pv=(vi,...,va:)) = ﬁ B [2“, %] (v)) (25)

Given a vector v, the corresponding error rate is just the sum over all subspaces

divided by the number of instances: € = E? 1 vj/2*. Hence, we can characterize

the distribution that governs this sum of errors e recursively in Equation 26. The
intuition of this equation is that an error of e instances is incurred in subspace
j through 2! when either an error of v; (class label 0) is incurred in subspace
j and an error of e — v; is incurred in subspaces j + 1 through k, or an error
of 28~ — y; is incurred in subspace j (class label 1) and the remaining error of
e — (2*~% — ;) is incurred in subspaces j + 1 through k. The factor 2* is used to
convert, error rates into absolute numbers of errors and vice versa. The intuition
of Equation 27 is that, in the last subspace, vy: instances are misclassified with

202 Tobias Scheffer

certainty when vy = 287 —1,: (equally many instances have class labels of zero
and one), and vy and 2¥7% — vy instances are misclassified with probability 1
otherwise, and no other error rates are possible.

e 1 e—1
P(E: 2—k‘yj,...,u2i):§P <e:7‘l/j+1,...,u2i> (26)
1 e—2""4p
+§P <€: Tl‘yj+1,...,1/2i>

1 lﬂ Vi :2k_i—l/2i
1 -
e siff i = e
whereP(e:—‘Ui): 2. .
2k |72 Fiff o =21 —¢
0 otherwise

(27)

Hence, over all functions fj (with fixed k) and hypotheses h, Equation 28 gives
the distribution of error histograms. In this equation, we simply factorize v;
P(e |v=(v1,...,vsi)) is quantified by Equation 26, and P(v = (v4,...,vsi)) by
Equation 25.

Hy)=> Plelv=(v1,...,v5))P(v = (v1,...,10:)) (28)

Finally, we can quantify the expected (over all samples S and target functions
fx) resulting error rate in Equation 29.

E{fk’s}(e(hL)|Hi,m k‘) (29)

_ Z e(>., P(he € Hf|e(he) = e,m)B[e,m](e)P(e|v)) de
fz P(h. € Hf|e(h.) = e,m)B[e, m](e) P(e|v)de

P(z/ = (Ul,...,l/Qi)))

P(he € Hf |le(he) = e, m) is quantified by Equation 24, P(e|v) by Equation 26,
and P(v = (v1,...,:)) by Equation 25. We can evaluate Equation 29 easily as
it refers only to the binomial distribution, the sample size and the numbers of
attributes ¢ and k.

(2): i > k. In this case, the target function assigns one class label to 2¢=*
instances which can be distinguished by the hypothesis. The hypothesis distin-
guishes 2? subspaces; a randomly drawn hypothesis will assign each of these
subspaces the correct class label half the time. Hence, the distribution of error
rates is governed by the binomial distribution as given in Equation 30.

m(e|H;, fr) = B {%2] (30)

We can quantify the expected resulting error in Equation 31 by replacing 7 in
Equation 20 by the binomial distribution.

E{fk’s}(e(hL)|Hi,m,k) (31)

Average-Case Analysis of Classification Algorithms 203

[e (>, P(he € Hfle(he) = e,m)P(e(h.) = ele,m)B[%,2](€)) de
fe > P(he € H?|e(he) = e,m)P(e(he) = e|e,m)B[%, 2](e)de

P(h. € Hf|e(h.) = e,m) is given by Equation 24. Let us check whether
Equations 29 and 31 predict the error rate of a learner accurately. In our exper-
iments, we drew 200 Boolean functions with 3 relevant attributes and allowed
model classes of between 1 and 6 attributes. Figure 1 shows the averaged error
histograms for all model classes. Figure 2 compares theoretical and measured
error rates €(hl) of hypotheses with least empirical error. We can see that the
predicted error rates fit the measured rates fairly closely.

Note that the averaged error histograms of model classes 1 through 3 are
equal. As long as the error histogram stays constant, increasing the number of
hypotheses decreases the resulting error rate. As we add irrelevant attributes,
the ratio of hypotheses with very low error rates decreases and the resulting
error increases.

T T
Hypotheses contain one attribute —+—
2 aftributes ---x---
a 3 attributes ---x---
o e 4 attributes &
R 1 5 attributes --m--
K 6 attributes ---o--
LI
s ¢
P
fom 1
6/ \ o
" W
7 W
'
§ m % 1
l-’,’ =] ‘:~
i 13
4 &Y i
o | Vi
79 °
T o B P 1
a9 & wm g
0 & SoncE © . . Pocaimosdlinon
0 0.2 0.4 0.6 0.8 1

Fig. 1. Error histograms for models which contain Boolean attributes z1,...x; when
the target function requires attributes x1, z2, x3. The distributions are equal in the first
three models; the variance then increases.

5 Decision Trees and Unknown Targets

In general, the error histogram is not known. However, we can estimate the
error histogram from the sample and thus apply the analysis approximately for
arbitrary target distributions. As an estimate of 7(e|H;) we use the empirical
counterpart w(e|H;) (the distribution of empirical error rates of hypotheses in
H; with respect to the sample S) which we can record when H; is known and a
sample S is available. We can obtain 7(e|H;) by repeatedly drawing hypotheses

204 Tobias Scheffer

T
Predicted learning curve —+—
Learning curve measured in simulation ---x---

03l

02|

error

0.15 |-

3 4
number of attributes

Fig. 2. (b) Learning curve: Expected error (theoretical and measured values) when the
target function requires attributes 1 through xs and model H; (i is on the horizontal
axis) uses attributes z; through z;.

from H; under uniform distribution, or by conducting a Markov random walk
in the hypothesis space with the uniform distribution as stationary distribution
[4].

This raises the question whether estimating the error histogram of a model
class sufficiently accurately is any easier than estimating the error rate of all
hypotheses in that model class. Fortunately, Langford and McAllester [8] have
answered this question affirmatively. It is obvious that the empirical error his-
togram converges toward the true error histogram when m grows — in other
words, lim,,, P(e|H;) = n(e|H;). However, when m goes to infinity, then all
empirical error rates converge to their corresponding true error rates and the
error prediction problem becomes trivial as we can treat the training sample er-
ror rates as true error rates. One of the main results of PAC theory (e.g., [6]) is
that we achieve uniform convergence (i.e., all empirical error rates approximate
their corresponding true error rates accurately) only when log |Hi] g sufficiently
small. However, the empirical error histogram converges to the true histogram
even if logr‘n—Hil is arbitrarily large.

Consider a process in which both the sample size m; and the size of the model
class grow in parallel when i — oo, such that 1°'°:7|1—H| stays constantly large.
Over this process, we are unable to estimate all error rates in H; but P(e|H;)
converges to w(e|H;) as i grows [8]. In this respect, estimating the histogram is
much easier than estimating all error rates in H;. For an extended discussion on
the complexity and accuracy of estimating 7, see [14].

The objective of the next experiment is to check whether our analysis can pre-
dict the error rate of a decision tree learner accurately for a set of problems from
the UCI data set repository. For each problem and every number of leaf nodes 1,

Average-Case Analysis of Classification Algorithms 205

we estimate the histogram of error rates 7 (e| H;) using 4000 x 2¢ randomly drawn
decision trees using an algorithm described in [14] running in O(4000¢). Using
the estimate of 7, we evaluate Equation 20. We also run a decision tree learner
that minimizes the empirical error rate using exactly i leaf nodes [15]. We use
the resulting empirical error to evaluate Equation 7. We then run a 10-fold cross
validation loop (for each number). In each fold, we run the exhaustive/greedy
learner and estimate the generalization error using the holdout set.

Figure 3 compares the predicted to the measured generalization error rates
(based on Equation 20) for the empirical error minimizing learner learner, and
Figure 4 compares predicted error given the empirical error (Equation 7) to
measured error. For most measurements, the predicted value lies within the
standard deviation of the measured value which indicates that the predictions
are relatively accurate. Only for the Cleveland and E. Coli problem we can see
significant deviations.

0.38 T T T . T T T 1T T T L T L 0.5 T
0.36 predicted —+— | 0.7 & predicted —+— | 0.45

034 % cross validation ------- \ cross validation --
0‘32 N std. dev. t--x---: \ std. dev. :--

0.3
0.28
0.26
0.24
0.22

T T T T T T

predicted —— |

cross validation -------
std. dev. +--x---

3

error rate
error rate
error rate

1234567 8910
(b) leaf nodes

06 06 0.6
058 £ 3 predicted —+— 0.55 predicted ——
cl 0.55 - cross validation - 1 0.5 cross validation --

0.56

° ® std. dev. :-- o 0.45
g 054 = y ; © 04
5 0.52 5 0.45 5 0.35
£ 05 = £ 03
© ® ®© 0.25
0.48
0.35 g 0.2
0.46 - 0.15
0.44 0.3 L L L L L L L L 0.1 L L
12345678910 123

(e) leaf nodes

T T d \t d\ T T 04 T T
predicted —+— |
cross validation ------- 0.35

T T T T T T

predicted —— |
cross validation -
std. dev. :-->

error rate
error rate

Fig. 3. Predicted (Equation 20) and measured (10-fold cross validation) generalization
error rates of decision trees restricted to i leaf nodes. (a) diabetes, (b) iris, (c) crx, (d)
cmg, (e) cleveland, (f) ecoli, (g) wine, (h) ionosphere.

206 Tobias Scheffer

038 T T T T T T T T 08 T T T T T T T T 05 T T T T T T T T
0.36 |-predicted (greedy) —— 0.7 | predicted (greedy) —— 0.45 4 predicted (greedy) —+— |
0.34 1 cross validation 0.6 I\ cross validation i 0.4 cross validation i
® - \ std. dev. AW std. dev. ® X std. dev.
© 05 5 035 i
5 04 | 5 0.3 1
5 03 | 5 025 B
02 0.2 B
0.1 0.15 -
01 1 n Il Il Il Il Il 1
123 456 7 8 910 1234567 8 910
leaf nodes leaf nodes
0.6 ——T—T—T—T—T T 06 1T 0.6 F—T—T—T—T—T—T T
0.58 L Predicted (greedy) —+— predicted (greedy) —— 0.55 % predicted (greedy) —+—
0.56 | gross validation -] 0.85 " cross validation -- 0.5 B\ cross validation -- i
® - sid. dev. :-- ® 05 | - std. dev. :-- 045 | std. dev. i-- B
s 054 AN I : e - 0a]
5 052F 5 o0ae |]
s 051 ® 03 |
0.48 - 0.25
0.46 | X 02
0.44 Il Il Il Il Il Il i Il . Il Il Il Il Il Il Il Il 0.15
123 45678 910 12345678 910 123 45678 910
leaf nodes leaf nodes leaf nodes
07 T IN T T T T T T 04 T T T T T T T T
0.6 predicted (greedy) —+— 0.35 ¢ predicted (greedy) —+— |
P cross validation -------) cross validation - -
o 05 F\X% std. dev. - 0.3 std. dev. #--x--
S 04r 0.25 B
S o3f 0.2 g
o -
02| 0.15 | (s
0.1+ 01 X XX
0 I S T R R ool v
123 456 7 8 910 1234567 8 910
leaf nodes leaf nodes

Fig. 4. Predicted (Equation 7) and measured (10-fold cross validation) generalization
error rates of a decision tree learner (based on measured empirical error rates), re-
stricted to i leaf nodes. (a) diabetes, (b) iris, (c) crx, (d) cmc, (e) cleveland, (f) ecoli,
(g) wine, (h) ionosphere.

6 Discussion

Average-case analyses quantify the expected (over all samples) error of a learning
algorithm for a given target function. Consequently, they are able to predict the
behavior of a learning algorithm for a specific learning problem much better
than worst-case analyses. Unfortunately, average-case analyses are not quite as
easy to apply as worst-case analyses. The reason is their reference to specific
properties of the underlying learning problems which typically are not known.
In science, this corresponds to the initial state of a physical system that has to
be known before the development of that system over time can be predicted.
In most cases, average-case analyses break the error rate only approximately
into measurables and domain properties. This is clearly a drawback, but it does
not automatically void the usefulness of such analyses. Since the strength of such
approximations is often difficult to quantify, in most cases the only feasible way is
to run learning algorithms and to measure the deviation between predicted and
measured error rates. The experiments presented in this paper provide evidence
for the usefulness of the approximate Equation 20. The analysis of the error rate

Average-Case Analysis of Classification Algorithms 207

given the empirical error (Equation 7) differs from most known analyses by not
being approximate.

Average-case analyses have been discussed for various learners. Iba and Lan-
gley [7] have studied the behavior of decision stump learners. Okamoto and
Yugami [11,12] presented an analysis for k-nearest neighbor classifiers; Fuku-
mizu [3] for linear neural networks. Reischuk and Zeugmann [13] analyzed the
average time complexity of an algorithm that learns one-variable pattern lan-
guages. An analysis of Naive Bayesian classifiers has been presented by Lang-
ley et al. [10]; under some simplifying approximations [9] the analysis becomes
computationally efficient. An average-case analysis of cross validation has been
presented in [16].

A first version of the analysis class was presented by Scheffer and Joachims
[18,17] and later generalized [19] and applied to text categorization and decision
tree regularization [15]. Independently, Domingos [1] presented a similar analysis
which additionally assumes that all hypotheses incur equal error rates. Lifting
the latter assumption [2] leads to an analysis that (besides making the additional
assumption that the training set error is known) deviates from the first analysis
[18] only in some technical details.

The histogram of error rates has been used to improve on worst-case error
bounds. The idea of a worst-case analysis of [5] is that hypotheses with an error
rate of much more than the desired error bound e have a much smaller chance of
incurring the least empirical error than hypotheses with an error rate that lies
just slightly above e. In contrast to the resulting shell decomposition bounds, we
obtain the exact distribution that governs the resulting error rate (and therefore
also the expected error).

An interesting question to pose is whether the estimated empirical error his-
togram can lead to a non-approximate claim on the resulting generalization error.
Given the uncertainty that remains when the histogram has been estimated, it is
not possible to determine the eract expected generalization error (which we are
concerned about in this paper), but Langford and McAllester [8] have proven
worst-case shell decomposition bounds that differ from those of [5] by taking into
account that the histogram is only estimated.

We have shown that the error histogram for Boolean functions is a certain
binomial distribution. A fundamental question is whether there is a more general
link between the error histogram and measurable properties (such as the VC
dimension) of the model class and the class of target functions.

References

1. P. Domingos. A process-oriented heuristic for model selection. In Proceedings of
the Fifteenth International Conference on Machine learning, pages 127-135, 1998.

2. P. Domingos. Process-oriented estimation of generalization error. In Proceedings
of the Sizteenth International Joint Conference on Artificial Intelligenct, 1999.

3. K. Fukumizu. Generalization error of linear neural networks in unidentifiable cases.
In Proceedings of the Tenth International Conference on Algorithmic Learning The-
ory, 1999.

208

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Tobias Scheffer

W. Gilks, S. Richardson, and D. Spiegelhalter, editors. Markov Chain Monte Carlo
in Practice. Chapman & Hall, 1995.

D. Haussler, M. Kearns, S. Seung, and N. Tishby. Rigorous learning curve bounds
from statistical mechanics. Machine Learning, 25, 1996.

David Haussler. Decision theoretic generalizations of the PAC model for neural
net and other learning applications. Information and Computation, 100(1):78-150,
September 1992.

W. Iba and P. Langley. Induction of one-level decision trees. In Proceedings of the
Ninth International Conference on Machine Learning, pages 233-240, 1992.

J. Langford and D. McAllester. Computable shell decomposition bounds. In Pro-
ceedings of the International Conference on Computational Learning Theory, 2000.
P. Langley and S. Sage. Tractable average case analysis of naive bayes classifiers. In
Proceedings of the Sizteenth International Conference on Machine Learning, pages
220-228, 1999.

Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian classifiers.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages
223-228, 1992.

S. Okamoto and Y. Nobuhiro. An average-case analysis of the k-nearest neighbor
classifier for noisy domains. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 238-243, 1997.

S. Okamoto and N. Yugami. Generalized average-case analysis of the nearest
neighbor algorithm. In Proceedings of the Seventeenth International Conference
on Machine Learning, pages 695-702, 2000.

Riidiger Reischuk and Thomas Zeugmann. Learning 1-variable pattern languages
in linear average time. In Proceedings of the Eleventh Annual Conference on Com-
putational Learning Theory, pages 198-208, 1998.

T. Scheffer. Error Estimation and Model Selection. Infix Publisher, Sankt Au-
gustin, 1999.

T. Scheffer. Nonparametric regularization of decision trees. In Proceedings of the
European Conference on Machine Learning, 2000.

T. Scheffer. Predicting the generalization performance of cross validatory model se-
lection criteria. In Proceedings of the International Conference on Machine Learn-
1ng, 2000.

T. Scheffer and T. Joachims. Estimating the expected error of empirical minimizers
for model selection. Technical Report TR 98-9, Technische Universitaet Berlin,
1998.

T. Scheffer and T. Joachims. Estimating the expected error of empirical minimizers
for model selection (abstract). In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, 1998.

T. Scheffer and T. Joachims. Expected error analysis for model selection. In
Proceedings of the Sixzteenth International Conference on Machine Learning, 1999.

Self-duality of Bounded Monotone Boolean
Functions and Related Problems

Daya Ram Gaur and Ramesh Krishnamurti

School of Computing Science, Simon Fraser University
B.C, V5A 1S6, Canada
{gaur ,ramesh}@cs.sfu.ca

Abstract. In this paper we show the equivalence between the problem
of determining self-duality of a boolean function in DNF and a special
type of satisfiability problem called NAESPI. Eiter and Gottlob [3] use
a result from [2] to show that self-duality of monotone boolean functions
which have bounded clause sizes (by some constant) can be determined
in polynomial time. We show that the self-duality of instances in the
class studied by Eiter and Gottlob can be determined in time linear in
the number of clauses in the input, thereby strengthening their result.
Domingo [7] recently showed that self-duality of boolean functions where
each clause is bounded by (1/log n) can be solved in polynomial time. Our
linear time algorithm for solving the clauses with bounded size infact
solves the (y/Iogn) bounded self-duality problem in O(n*y/logn) time,
which is better bound then the algorithm of Domingo [7], O(n?).
Another class of self-dual functions arising naturally in application do-
main has the property that every pair of terms in f intersect in at most
constant number of variables. The equivalent subclass of NAESPI is
the c-bounded NAESPI. We also show that c-bounded NAESPI can be
solved in polynomial time when c¢ is some constant. We also give an alter-
native characterization of almost self-dual functions proposed by Bioch
and Ibaraki [5] in terms of NAESPI instances which admit solutions of
a ‘particular’ type.

1 Introduction

The problem of determining if a monotone boolean function in DNF containing n
clauses, is self-dual is ubiquitous. It arises in distributed systems [1,10], artifi-
cial intelligence [16], databases [14], convex programming [11] and hypergraph
theory [8], to name a few. The exact complexity of determining if a monotone
boolean function is self-dual is open. Fredman and Khachiyan [9] provide an
O(n*eogm)+0()) algorithm for solving the problem. Bioch and Ibaraki [3] de-
scribe a host of problems which are equivalent to determining the self-duality.
They also address the question of existence of incremental polynomial algorithms
for solving the problem of determining the self-duality of monotone boolean
functions. In a related paper [4] they define a decomposition of the problem
and give an algorithm to determine a minimal canonical decomposition. Bioch

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 209-223, 2000.
© Springer-Verlag Berlin Heidelberg 2000

210 Daya Ram Gaur and Ramesh Krishnamurti

and Ibaraki [5] describe an incremental polynomial algorithm [15] for gener-
ating all monotone boolean functions of n variables. It has been shown that
for 2-monotone [6] boolean functions, it is possible to check the self-duality in
polynomial time. Bioch and Ibaraki [5] define almost self-dual functions as an
approximation to the class of self-dual functions. They describe an algorithm
based on almost self-duality to determine if a function is self-dual. The complex-
ity of their procedure is exponential in the worst case. Ibaraki and Kameda [12]
show that every self-dual function can be decomposed into a set of majority
functions over three variables. This characterization in turn gives an algorithm
(though not polynomial) for checking self-duality. Makino and Ibaraki [13] define
the latency of a monotone boolean function and relate it to the complexity of
determining if a function is self-dual.

In this paper we show the equivalence between the problem of determining
self-duality of a boolean function and a special type of satisfiability problem
called NAESPI (to be defined later). We identify a subclass (denoted easily sat-
isfiable) of NAESPI instances which can be solved in polynomial time. We show
that almost self-duality [5] implies that the corresponding NAESPI is not eas-
ily solvable and vice-versa. Having established the equivalence between almost
self-duality and not easily satisfiable instances of NAESPI, we show an NP-
completeness result for determining the solution of a particular type of NAE-
SPI. This result is interesting as it relates to the concept of almost self-duality.
Eiter and Gottlob [8] use a result from [2] to show that self-duality of monotone
boolean functions which have bounded clause sizes can be determined in polyno-
mial time. We show that NAESPI which has clauses of size at most & (denoted
ENAESPI) can be solved in O(n?**2) time (this corresponds to self-duality
of monotone boolean functions which have clauses of size at most k). Next,
we reduce the complexity of the O(n?**2) algorithm for solving &-NAESPI to
O(Q(kQ)nk), which is linear in n for constant k. We show that for &NAESPI
where the intersection between pairs of clauses is bounded by ¢, the number of
clauses is at most k°t1. We also show that c-bounded NAESPI can be solved in
O(n?¢*?) time, which is polynomial for constant c.

In Section 2, we introduce the problem of determining whether a monotone
boolean function is self-dual. Next we introduce the not-all-equal satisfiability
problem with only positive literals and with the intersection property (NAESPI),
and establish the equivalence between the two problems. We also show that
imposing certain restrictions to either the instances of NAESPI or solutions to
NAESPI enables us to compute the solution in polynomial time. In Section 3,
we provide an O(n?*%2) algorithm for the NAESPI problem which has n clauses
with at most k variables each. In Section 5. we modify the algorithm presented
in Section 4. to obtain an algorithm for solving ~NAESPI in O(Q(kz)nk) time. In
Section 5, we provide an upper bound on the number of clauses for the c-bounded
kNAESPI problem. In the same section, we show that ¢-bounded NAESPI can
be solved in O(n?¢*2) time, which is polynomial for constant c.

Self-duality of Bounded Monotone 211

2 Self-duality of monotone boolean functions and
NAESPI

Given a boolean function f(x1,za,...,z,), we define its dual denoted by f¢ as
follows:

Definition 1 Dual: f(z) = f(z), for all vectors x = (1,2, ...,z,) € {0,1}™.
Next we define monotone boolean functions.

Definition 2 Monotone boolean function: A boolean function f is monotone if
Vo,y € {0,1}" f(z) < f(y). A vector x <y if x; < y;, 1 € {1.n}.

Equivalently, a boolean function is monotone if it can be represented by an
expression which does not contain any negative literals. If a monotone function f
is in disjunctive normal form (DNF) then f¢ can be obtained by interchanging
every and operator with an or operator and vice versa. f¢ is then be in conjunc-
tive normal form (CNF). Self-duality can now be defined as:

PROBLEM: Self-duality
INSTANCE: A boolean function f(z1,22,...,Tn).
QUESTION: For every vector = (x1,T2,...,2,) € {0,1}" is f4(z) = f(x)?

From the definition of self-duality it follows that:

Property 1 A boolean function f is self-dual <= for all vectors z € {0,1}",

f(x) # f(2).

We can assume that the monotone function f is in DNF. Next we show that
if there exists a pair of clauses in a monotone function f which do not intersect
in any variable, then f is not self-dual. This observation is also implicit in [9].

Lemma 1 If there exists a pair of non-intersecting clauses in a monotone func-
tion f, then f is not self-dual.

Proof: Let C; and C3 be two such clauses. We construct a vector « € {0, 1}" such
that all the variables occurring in C are set to 1 and all the variables occurring
in Cy are set to 0. The remaining variables are arbitrarily set to 0 or 1. f(z) =1
as the clause C evaluates to 1. Also, f(Z) = 1 as Cy evaluates to 0 on x. Hence
by Proposition 2, f is not self-dual. a

Lemma 1 allows us to focus only on those monotone boolean functions in
which every pair of clauses intersect. Another assumption which we use through-
out this paper is the following;:

212 Daya Ram Gaur and Ramesh Krishnamurti

Property 2 Every variable in f belongs to at least 2 terms in f.

Property 2 coupled with Lemma 1 implies that each term has at most n
variables where n is the total number of clauses in f. Therefore the total number
of variables m < n? in f. Given such a function f, we now construct the NAESPI
problem and show the equivalence of the two problems. Next we define the
NAESPI problem.

PROBLEM: NAESPI

INSTANCE: Given a set of variables V' = (v1,v2,...,0m), and a collection
of clauses C;,i = {1,...,n}, C; C V, every pair of clauses C;,C; has a
non-empty intersection.

QUESTION: Find a set S C V such that S contains at least one variable from
every clause, but no clause is contained in S.

We are given a monotone boolean function f in DNF form. P is obtained
by interpreting the function as a CNF formula. In other words, if f = (z1 A
x2) V (1 Ax3) V (22 Ax3) then P = (z1 Vaxa) A (21 V a3) V (22 V z3). Note that
every pair of clauses in P intersect since every pair of clauses in f intersect. The
next proposition states that the complement of a solution to a given NAESPI
problem P is also a solution to P.

Proposition 1 If S is solution to a given NAESPI problem P, then so is S.

We now show that the two problems are equivalent by showing that f is not
self-dual if and only if P is satisfiable.

Theorem 1 f is not self-dual <= P is satisfiable.

Proof: = Assume that f is not self-dual. By Proposition 2 we have a vector z
such that f(x) = f(Z). There are two cases:

— f(z) = f(z) = 1. Let C; be the clause in f which evaluates to 1. For the
vector T, C; evaluates to 0. As C; intersects every other clause in f, all these
clauses have at least one variable set to 0. This is a contradiction as f(Z)
was supposed to be 1. Hence this case cannot happen. This also amounts to
saying that the function is not dual-minor, hence it cannot be self-dual.

— f(z) = f(Z) = 0. Let S be the union of all the variables in f which are
assigned 1 in the vector x. Each clause in f contains at least one 0 because
f(z) = 0. Similarly, each clause in f contains at least one 1 as f(z) = 0. This
means that S contains at least one element from each clause in P and does
not contain at least one element from each clause in P. Hence S intersects
every clause in P but does not contain any clause in P. Therefore, S is a
valid solution.

Self-duality of Bounded Monotone 213

< Given a solution S to P, construct the vector x € {0,1}™ as follows:

zi=1if v;€ Selsex; =0

Clearly, f(z) = 0. Since S is also a solution to P (by Proposition 1), it follows
that that f(Z) = 0. Hence by Proposition 2 f is not self-dual. O

We now describe two particular types of solutions to the NAESPI problem
which can be computed in polynomial time.

Definition 3 Fasy solution: Given an NAESPI problem P, let S be a solution
such that S is contained in some clause of P. We call S an easy solution to P.

Given an easy solution S to the NAESPI problem P, we show that there
exists a clause C' € P such that C intersects S in |C| — 1 variables. We do this
by showing that if this property does not hold, then we can augment S until the
above mentioned property does hold. Given this fact, we devise an algorithm to
try out all the possible valid subsets to see if any one of them is a solution. As the
number of valid subsets is polynomial, the algorithm terminates in polynomial
time. More formally we need the following lemma:

Lemma 2 Let S be an easy solution to the NAESPI problem P. S can be ex-
tended to another easy solution S’ such that for a clause C € P, |CNS| = |C|—1.

Proof: Let Cy be the clause which contains S. Let a be an element of Cy not
in S. Let S =S Ua. If S is still a solution, we continue to add variables (which
are not in Cp) to S until S is no longer a solution (it is easy to see that this
process of adding variables must terminate). If S is not a solution to P then
there is some clause C € P, such that C' = S. Let a be the last variable added
to S. hen |C NS — {a}| =|C| — 1. But this implies that |[CNS|=|C|—-1. O

Lemma 2 provides a simple polynomial algorithm that generates each easy
candidate solution to the problem P, and verifies if it is indeed a solution. For
clause C € P, there are only |C| subsets of size |C|—1 which are candidates. For n
clauses, there are at most n x |C| < n? candidates which need to be verified.
Since verifying each candidate takes O(n) time, the algorithm complexity is
O(n?) time.

It should be noted that Lemma 2 is also valid for the NAESP problem (where
we drop the requirement that all the pairs of clauses intersect). Next we show
that if every pair of clauses in a given NAESPI problem P always intersects in
at least two variables, then P is trivially satisfiable.

Definition 4 Fasily solvable: A NAESPI instance is said to be easily solvable
if it admits an easy solution.

Next we study the relationship between easily satisfiable instances of NAESPI
and the almost self-dual functions proposed by Bioch and Ibaraki [5]. We give
some definitions from [5] below. A monotone boolean function f is called dual-
minor if f < f¢ Given w a minterm of f, we represent by @ all the variables
which are not in w but in f.

214 Daya Ram Gaur and Ramesh Krishnamurti

Sub-dual of a function f, denoted f* = Zwef ww?, where w is a minterm
of f. A function f is defined to be almost dual-major if f* < f. A function is
satisfiable if there exists a vector z € {0,1}" such that some clause evaluates
to 1 (recall that f is in DNF). The set of variables set to 1 is referred to as the
solution set S. f is easily satisfiable if the solution set S is properly contained
inside some clause in f.

Definition 5 Almost self-dual: A function f is called almost self-dual if f* < f
and [is dual-minor.

Theorem 2 A monotone boolean function f is almost self-dual <= f? is not
easily satisfiable.

Proof: = Given an almost self-dual function f, we want to prove that f? is
easily satisfiable. As, f is self-dual, f* < f, which implies f?¢ < fsd. Suppose
that f? is easily satisfiable. This implies f*? evaluates to 1 on some vector .
Let be properly contained inside clause C' € f¢. But in f*¢ we have C as a
clause and as f*? is in CNF, z is not a solution to f.

< Given that f¢ is not easily satisfiable, we want to show that f?¢ < fsd.
Suppose that f¥(z) = 1. We want to show that f5(z) = 1. As the solution
to f? is not an easy solution, it intersects every clause in f*¢. f is dual-minor
because f¢ has the intersection property. a

Theorem 2 implies that f is almost self-dual <= the corresponding NAESPI
is not easily satisfiable (corresponding NAESPI is structurally similar to f¢).

Lemma 3 NAESPI with cardinality of intersection at least two has a trivial
solution.

Proof: Let C be the clause which does not properly contain any other clause (such
a clause always exists). Let the cardinality of this clause be m. Let any m — 1
elements from this clause be denoted by set S. We claim that S is a solution.
Since C' intersects every other clause in at least two variables, S contains at least
one variable from every clause. In addition, since every clause (other than C)
contains a literal not in C, S cannot contain all the literals in a clause. a

3 KkNAESPI

In this section we study the &~NAESPI problem, in which there are n clauses
and every clause has at most k variables. We present an algorithm which solves
the &NAESPI problem in O(n?*+2) time (where n is the number of clauses).
For a given clause in the k-NAESPI problem, there are at most k assignments
of boolean values to the variables which set exactly one of the variables in the
clause to 1 and the remaining variables to 0. We call such an assignment a
10* assignment. The algorithm operates in stages. For the subproblem in an
intermediate stage, if B denotes the set of clauses which do not have any variable
set to 1, the algorithm tries out all the k possible assignments of the type 10* for
the clauses in B. We show that at most k stages are needed by the algorithm,
implying a running time of O(n®®)) for the algorithm.

Self-duality of Bounded Monotone 215

In the following discussion, we assume that the problem has at least k distinct
variables, else we can determine the satisfiability in O(2%) time.

Our algorithm is a recursive algorithm, which tries out all the possible 10*
assignments for every clause in a stage. Let U denote the set of variables set to 1.
Let B be the set of clauses that do not contain any variable in U. The algorithm
tries out all possible 10* assignment for every clause in B. The subproblem
obtained after choosing a clause is solved recursively. Sets U and B are updated
in each stage. The algorithm terminates either after k stages or after all the
variables are assigned a boolean value.

To prove the correctness of the algorithm we need the concept of minimal
solutions.

Definition 6 Minimal solution: A solution S to a k-NAESPI is minimal if no
proper subset of S is a solution.

Let S be a minimal solution to the given ~-NAESPI problem instance. Then
there is a clause C' which contains at most one element from S. Suppose this
were not true, then every clause contains at least two variables from S. Remove
from S any element s € S. S — s is still a solution to the problem as every clause
contains at least one element from S. Clearly this violates the minimality of S.
The above argument holds for any intermediate stage in the algorithm. At any
intermediate stage, note that U denotes the set of variables set to 1 so far in the
partial assignment and B the set of clauses which do not contain any variable
inU.

Theorem 3 If the partial assignment U can be extended to a complete minimal
solution U’', then there exists a clause in B which contains at most one element
from U’.

Proof: Let A denote the set of clauses which contain one or more variables
from the set U (the set of variables set to 1 in the partial assignment). Let W be
the set of variables occurring in the set of clauses B (which do not contain any
variable set to 1). Note that U N W = ¢. This means that setting any variable
in W to 0 does not unsatisfy any clause in set A. To obtain a contradiction,
assume that every clause in B contains at least two variables from the set U’.
We can set any variable in U’ to 0 without unsatisfying any of the previously
satisfied clauses. This violates the fact that U’ is minimal. O

Next we show that the satisfiability of any subproblem when the algorithm
terminates is easy to determine. Without loss of generality, we can assume that
the algorithm terminates after k stages (else the satisfiability can be determined
trivially). We argue that after k stages, there are at least k clauses of cardinal-
ity 2. Furthermore, the satisfiability of such an instance can be ascertained in
polynomial time.

Lemma 4 Let P be a k-NAESPI problem which contains at least k distinct
clauses of size 2. Satisfiability of P can be determined in polynomial time.

216 Daya Ram Gaur and Ramesh Krishnamurti

Proof: Without loss of generality, assume that the first k£ clauses are:

(a1,b), (az,b),..., (ak,b)

Suppose that there exists a clause C' which does not contain b. Then a; €
C,Vi € {1,...,n}, since every pair of clauses intersect. If such a clause C exists,
then P is unsatisfiable, else P is satisfiable. a

The algorithm moves from stage i to stage i+1 by picking a clause and setting
some variable in it to 1 and every other variable to 0. The variable set to 1 is
different from any of the variables set to 1 in stages 1 to i. This follows from the
fact that at each stage the algorithm only considers clauses which do not have any
variable set to 1.Thus after k stages, there are at least k clauses in which exactly
one variable is set to 1 and the remaining variables set to 0. Also, the k variables
which are set to 1 are all distinct. We next define the concept of contraction,
and describe some properties of contractions. We use contraction to show that
after k stages the problem has at least k distinct clauses of cardinality 2.

Let A be a subset of variables in the &~ NAESPI problem.

Definition 7 Contraction: For A CV (V is the set of variables in problem P’),
a contraction A — a occurs when every occurrence of a variable in A is replaced
by a.

The property of contractions stated in the proposition below follows from
the definition.

Proposition 2 Problem P’ obtained by contraction A — a is satisfiable <= P
has a solution S which contained all the variables in A.

Contraction A — a implies that if P’ has a solution, then all the variables
in A (in P) can be forced to the same value. Lemma 5 below proves that after k
stages, there are at least k clauses of cardinality 2 each.

Lemma 5 After the algorithm has made k choices (and is in stage k+ 1) there
exists a contraction such that the resulting problem P’ has at least k clauses of
cardinality 2.

We have k clauses of the type:

(alvAl)v (a2a A2)a cey (aka Ak)

Each a;, i = 1,...,k, is a distinct variable that is set to 1. Each A;, i =
1,...,k, is the set of variables in a clause that are set to 0. As A = Ay = ... =
Ay = 0, we can perform contraction (A; U Ay U...U Ay) — b. We can therefore
represent the k clauses as below:

(a1,b), (az,b), ..., (ak,b)

Self-duality of Bounded Monotone 217

Each of the above k clauses is of cardinality 2. O
We use Lemmas 4 and 5 to show that the algorithm terminates in O(n2*+2)
time.

Theorem 4 The algorithm runs in O(n**+2) time.

Proof: By Lemma 5 the algorithm needs at most k stages. In each stage the
algorithm has to try at most n clauses., for each of which there are at most k
assignments of type 10* to be tried. Therefore the recurrence is:

Tk)=nxkxT(k—-1)

which evaluates to (n x k)¥ < (n?)* as k < n. As it takes O(n?) time to
verify the solution, the time complexity is O(n?¥+2). O

4 Linear Time algorithm for solving /-NAESPI

The algorithm is again recursive but instead of trying out every possible 10*
assignment for every clause, it tries out all the 2 — 2 contractions for each
of some k clauses. The algorithm begins by choosing a clause of length greater
than 2 and a contraction for it. It then removes all the clauses which are trivially
satisfied (clauses which contain both the contracted variables). Suppose that we
are in Stage [+1. The clauses which are of cardinality 2 are of the form shown
below (Lemma 4). This is under the assumption that the contraction we made
is extendible to a solution.

(a1 VD) A(az VD)A(.VD)A (. VD) A (a; VD)

Without loss of generality, we assume that there is a clause which does not
contain any of the variables from the set {a1,...,a;} else, we have a solution to
the problem. This follows from the fact that each clause contains at least one
of the variables from {a1,...,a;}. Setting all the variables in {a1,...,a;} to 1
and rest of the variables to 0, results in a solution to the given instance. Let C'
be such a clause. For Stage [+1 we try out all the possible 2¥-2 contractions for
Clause C. We need to argue that any contraction of C' gives us a subproblem
with [+1 distinct variables a1, aq,...,a;41. Let A be the set of variables in C'
which are set to the same value and B the set of remaining variables in C' (which
are set to a value different from the value to which the variables in A are set).
If b € A then there exists a variable in B which is different from any of the a; .
This is due to the fact that C' does not contain any of the variables a;, aq, ..., a;.
Hence the clause obtained after the contraction is distinct. The case when b € A
is symmetrical.

Formally the algorithm is stated below:

Algorithm

1. S is the set of distinct variables which belong to some clauses of size 2 and are
forced to have the same value (S = {a1, as,...,a;} in the previous example).
Initially S = @.

218 Daya Ram Gaur and Ramesh Krishnamurti

2. Find a clause C such that C' does not contain any variable in S. If no such
clause exists then S intersects with all the clauses and we are done.

3. For each contraction (out of the 2¥ — 2 possible ones), update S, remove all
the clauses which are trivially satisfied and goto Step 2.

Let us consider the projective plane example again.
Ezxzample 1.

(IV2V3)ABVAVE)A(IVEVE)A(IVAVT)A(VEVTIA(BVEVT)A(2V4AVE)

Consider the first clause and a contraction in which {1, 2} get the same value
and 3 gets a value different from 1 and 2. Since {1, 2} get the same value we can
replace them with a new variable a. Hence, the modified problem is:

(aV3)A(BVAVE)A(aVEVE)A(aVAVTIA(aVEVT)A(BVEVT)A(aV4VE6)

and S = {a}. Let (3V4V5) be the clause C' (which does not contain a) for which
we are going to try out all the possible contractions next. Possible contractions
for C are {{3,4},{3,5},{4,5}}. Let {3,4} be contracted to variable b. Then the
subproblem obtained is;

(aVb)ADBVEYA(@VEVE)A(aVOVT)A(@VEVT)ADBVEVT)A(aVDVE6)

S now is updated to SU{5} = {a,5}. Also, the problem is not in minimal form
as we have clauses which contain the clause (@ V b). The minimal subproblem is:

(VB ADBVEYA(@VEVE)A(aVEVT)A(DBVEVT)
and so on.

The algorithm solves the subproblem recursively. If the subproblem is un-
satisfiable then we try out the next contraction for the first clause. If all the
contractions have been tried for the first clause then we return unsatisfiable.

Theorem 5 The modified algorithm terminates in O((Qk)k x n x k) time.

Proof: After k recursive calls we can use Lemma 5 to determine the satisfiability
of the instance, as all the contracted clauses (of size 2) are distinct. Therefore
the number of the times Lemma 5 is invoked is given by the following recurrence:

flk)=2"f(k — 1)

As it takes O(nk) time to determine the satisfiability in the invocation of

Lemma 5, the running time of the algorithm is O((Qk)k X n x k) which is linear
in n. O

Self-duality of Bounded Monotone 219

5 c¢-bounded

In this section we describe polynomial time algorithms for the k-NAESPI and the
NAESPI problem when any two pairs of clauses intersect in at most ¢ variables.
It should be noted that we treat k and c as constants.

Definition 8 (c-bounded NAESPI) A (k-)NAESPI is c-bounded if every two
clauses intersect in less than c+1 variables.

As pointed out in Section 1. ¢-bounded A~NAESPI is of interest because this
subclass of NAESPI arises naturally in designing coteries used to achieve mutual
exclusion in distributed system with minimum number of messages.

For c-bounded k-NAESPI we show that there exists an algorithm which can
determine the satisfiability of the input instance in O(n“*'k) time. We show
an upper bound of kT! on the number of clauses (n) for c-bounded ~-NAESPI
which do not contain any solution of size strictly less than [. In this case the
algorithm shown in Section 4. for solving &=-NAESPI terminates in O(k(¢+1kn)
time for ¢-bounded k-NAESPI. If there exists a solution of size at most ¢ then
we try out all the subsets of size c¢. As there are O(n®) subsets of size ¢ and
verifying the solution takes O(nk) time, the total running time for this case is
O(n°t'k). Since, O(n°t'k)) dominates O(k{t1V*n), c-bounded &-NAESPI can
be solved in O(n°Ttk)) time.

For the c-bounded NAESPI we give an O(n?¢*2) algorithm for solving the
problem. It should be noted that c-bounded k& NAESPI is a subclass of ¢-bounded
NAESPI hence the latter results is weaker. Also, the techniques used in obtain-
ing the respective results have no similarity whatsoever. Sections 5.1 and 5.2
describe the results for the c-bounded &~NAESPI and c-bounded NAESPI prob-
lems respectively.

5.1 c-bounded i-NAESPI

In this section we show that for a c-bounded k-NAFESPI, the number of clauses
n < k°t!. The main tool used in obtaining the results is an auxiliary graph
which is defined below.

Definition 9 (Auxiliary Graph) An auziliary graph is an edge labeled clique
graph whose vertices are the clauses and the labels on edge (i,j) are the variables
which are common to clauses i and j.

Definition 10 (c-solvable) A k-NAESPI is c-solvable if there exists a solu-
tion S such that |S| < c.

Theorem 6 For c-bounded k-NAESPI (which is not c-solvable) the number of
clauses n < k¢t1,

Proof: Let G be the auxiliary graph. For any c¢ variables x1,..., ., let
K1, ..., K. be the corresponding cliques which contain labels x1,...,x.. Let

220 Daya Ram Gaur and Ramesh Krishnamurti

Vi,e = Nief1..c} K be the set of vertices which are in cliques K; through K.. We
claim:

|V1,c| S k

Let u be a vertex which is not in Ky,...,K.. Such a vertex should exist
otherwise the given input is c-solvable. No two edges from u which are incident
on any two vertices in V. can have the same label, else we have an edge which
has k + 1 labels on it. As |u| < k, we get |V .| < k.

Now we bound the size of Njc(1...—1)}Ki. Let v be a vertex which does not
belong to Nieq1..c—13 K (v exists because the input is not (c-1)-solvable). Ev-
ery edge from v onto N;eq1..—11/K; has a label different from x1,...,2.1 (as
Nic{1..c—1} K 1s maximal). Let L be the set of labels on the edges incident from v
onto Nie(1..c—1) K. Each label [€ L can occur at most k times or we would have
|V170| > k.

Using the argument presented above, if [< ¢:

| Nieqray K| < keI

Now we are ready to bound the size of individual cliques K;. Let u be the
vertex not in K; (such a vertex exists because the input is not 1-solvable). L
is the set of labels on edges incident from u onto K;. We know |L| < k and
|K; N Kj| < k1 for any label x;. The maximum number of vertices in K is
< k° (ie. l(z;) <E°).

We also know that,

n < Z I(x;)

z;,€C

Hence, n < kel

In this section we have established that for instances of &-NAESPI which ar%
c-bounded the number of clauses is n < k°*1. Next we describe an O(n?“*2)
algorithm for c¢-bounded NAESPI.

5.2 c-bounded NAESPI

Definition 11 (c-bounded NAESPI) An instance of NAESPI is called c-
bounded if every pair of clauses intersect in at most ¢ variables for some con-
stant c.

In this section we show that c-bounded NAESPI can be solved in O(n?*2)
time. For a set of variables V an assignment of boolean values to the variables
is called a 1*0 assignment if all the variables in V' except one are set to 1 and
the remaining variable set to 0. If all but one variable are set to 0 then the
assignment is called a 10* assignment.

We use the following definitions in the subsequent subsections. A solution S
to a given NAESPI is a subset of variables such that V intersects each clause in
the input but does not contain any clause in the input. A solution S is called

Self-duality of Bounded Monotone 221

minimal if no proper subset of S is a solution. If V' is the set of variables in the
input instance then at times we refer to S as the set of variables which can be
set to 1 and V' \ S is the set of variables which can be set to 0.

Given an instance of ¢-bounded NAESPI, without loss of generality, assume
that the minimal solution contains c+1 variables at least, else the input instance
is c-solvable and we can determine the solution in O(n°*?2) time. This follows
because there are at most O(n¢) hitting sets which could be defining the solution
and it takes O(n?) time to verify if some subset is extendible to a solution.

Let {a1,...,a.} be the variables in the minimal solution. This implies the
existence of ¢ clauses C1 = (a1 V 41),Co = (a2 V Ag),...,C. = (a. V A.), such
that all the variables in the set U;—1. .A; are set to 0 given the fact that the
variables a1, a9, ..., a. have been set to 1. Once again we can partition the set
of clauses in the input into two sets: P denotes the set of clauses which have
at least one variable set to 1 and N denotes the set of clauses which have at
least one variable set to 0 in our trial. Clauses which contain variables set to
both 1 and 0 will be satisfied and are removed from further consideration. All
the clauses in P contain every a; as they have to intersect with every C;. Clauses
in N contain no variable set to 1.

Assume, |P| > ¢ + 2, else we can try out all the O(n°™!) possibilities and
determine the solvability of the instance in O(n?¢*?) time. Once again, there are
at most O(n°*!) hitting sets and for each hitting set we spend O(n?) time to
verify if the hitting set is indeed a solution.

Theorem 7 Given N and P as defined above, the solvability of the input in-
stance can be determined in polynomial time.

Proof: Tt should be noted that all the uninstantiated variables in the set of
clauses P are distinct. We are interested in finding a hitting set S of uninstan-
tiated variables from P such that S does not contain any clause in N. If we
have such a set S then, setting .S to 0 and all the other variables to 1 leads to a
solution.

Let [be the minimum number of uninstantiated variables in a clause in N.
This implies that |P| <[, else there are two clauses in P which have an inter-
section in more than ¢ variables. Furthermore every set of (I-1) uninstantiated
variables from the set of variables in P does not contain any clause in N. This
follows from the fact that [is the cardinality of the minimum-sized clause.

Let Sp, S1 be two hitting sets of clauses in P, such that Sy and S differ in
exacly one variable. If two such hitting sets do not exist, then all the variables
are forced to have an assignment of values different from the variables a and b
and the solvability of the instance can be determined easily. As Sy and S differ
in only 1 variable and |P| > ¢+ 2, |SoNS1| > ¢+ 1.

This implies that either Sy or S; does not contain a clause in N. If both Sy
and S7 contained a clause in N then there would be two clauses in N which
intersect in more than ¢ variables (note that each clause in N has at least c+1
variables). If Sy is the hitting set which does not contain a clause in N, then
setting all the variables in Sy to 0 and the remaining variables to 1 leads to a
solution to the input instance.

222 Daya Ram Gaur and Ramesh Krishnamurti

As there are n clauses of size at most n, determining the right set of clauses

C1, ..., C. and the 10* assignments can take at most ("j) = O(n*°) time. As,
it takes O(n?) time to verify a solution, the total running time for this case is
O(n?et2). 0

The case where |P| < ¢+ 1 is treated in the same way as, for the 2-bounded
case. We try out all the O(n°t!) minimal sets of variables in the set N which
could be defining the solution. As it takes O(n?) time to verify if some subset of
variables is a solution and given the fact that there are at most O(n°!) hitting
sets, the total running time of the algorithm is O(n2¢*2). Hence, the running
time of the algorithm is domainted by O(n?°+2).

6 Conclusion

We established the equivalence of determining the satisfiability of the NAESPI
problem and that of determining the self-duality of monotone boolean functions.
We established the hardness of finding certain types of solutions to NAESPI. We
also gave an alternate characterization of almost self-dual functions in terms of
a subclass of NAESPI.

We provided an 0(2(k2)nk‘) algorithm for the NAESPI problem with n clauses
and at most k variables per clause. We showed that the self-duality of instances
in the class bounded by size studied by Eiter and Gottlob [8] can be deter-
mined in time linear in the number of clauses in the input, thereby strengthening
their result. Domingo [7] recently showed that self-duality of boolean functions
where each clause is bounded by (y/logn) can be solved in polynomial time.
Our linear time algorithm for solving the clauses with bounded size infact solves
the (y/logn) bounded self-duality problem in O(n?+/logn) time, which is better
bound then the algorithm of Domingo [7], O(n?).

For ¢-bounded k-NAESPI we showed that the number of clauses n < k¢t1.
We also showed that c-bounded &~NAESPI can be solved in O(n°Tlk) time.
For c-bounded NAESPI we gave an O(n?°*?) algorithm for determining the
satisfiability of the problem. An open problem is to provide a polynomial time
algorithm for the general NAESPI problem.

Acknowledgements: The authors would like to thank Tiko Kameda for helpful
discussions and comments on an earlier version of this paper.

References

1. D. Barbara and H. Garcia-Molina. The vulnerability of vote assignments. ACM
Transactions on Computer Systems, 4(3):187-213, Aug. 1986. 209

. C. Berge. Graphs and Hypergraphs. North-Holland, 1973. 209, 210

3. J. Bioch and T. Ibaraki. Complexity of identification and dualization of positive
boolean functions. Information and Computation, 123(1):50-63, 1995. 209

4. J. Bioch and T. Ibaraki. Decomposition of positive self-dual functions. Discrete
Mathematics, 140:23-46, 1995. 209

\V]

10.

11.

12.

13.

14.

15.
16.

Self-duality of Bounded Monotone 223

J. C. Bioch and T. Ibaraki. Generating and approximating nondominated coteries.
IEEE Transactions on parallel and distributed systems, 6(9):905-913, 1995. 209,
210, 213

E. Boros, P.L. Hammer, T. Ibaraki, and K. Kawakami. Identifying 2-monotonic
positive boolean functions in polynomial time. In W.L. Hsu and R.C.T. Lee,
editors, Springer Lecture Notes in Computer Science 557, International Symposium
on Algorithms, Taipei, 104-115, 1991. 210

D. Carlos. Polynomial time algorithms for some self-duality problems. In Proceed-
ings of the Italian Conference on Algorithms, March 1997. 209, 222

T. Eiter and G. Gottlob. Identifying the minimum transversals of a hypergraph
and related problems. Siam Journal of Computing, 24(6):1278-1304, 1995. 209,
210, 222

Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of
monotone disjunctive normal forms. Journal of Algorithms, 21(3):618-628, Nov.
1996. 209, 211

H. Garcia-Molina and D. Barbara. How to assign votes in a distributed system.
Journal of the ACM, 32:841-860, 1985. 209

V. Gurvich and L. Khachiyan. Generating the irredundant conjunctive and disjunc-
tive normal forms of monotone boolean functions. Technical Report LCSR-TR-251,
Dept. of Computer Science, Rutgers Univ., Aug. 1995. 209

T. Ibaraki and T. Kameda. A boolean theory of coteries. IEEE Transactions on
Parallel and Distributed Systems, pages 779-794, 1993. 210

K. Makino and T. Ibaraki. The maximum latency and identification of positive
boolean functions. In D. Z. Du and X. S. Zhang, editors, ISAAC 199/, Algorithms
and Computation, volume 834 of Springer Lecture Notes in Computer Science,
pages 324-332. 210

H. Mannila and K. J. R&ih&. An application of armstrong relations. Journal of
Computer and System Science, 22:126-141, 1986. 209

C. Papadimitriou. Computational Complezxity. Addison Wesley, 1994. 210

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32:57—
95, 1987. 209

Sharper Bounds for the Hardness of Prototype
and Feature Selection

Richard Nock! and Marc Sebban?

L Université des Antilles-Guyane, Dépt Scientifique Interfacultaire, Campus de
Schoelcher
97233 Schoelcher, France
Richard.Nock@martinique.univ-ag.fr
2 Université des Antilles-Guyane, Dépt de Sciences Juridiques, Campus de Fouillole
97159 Pointe-a-Pitre, France
Marc.Sebban@univ-ag.fr

Abstract. As pointed out by Blum |], "nearly all results in Ma-
chine Learning [...] deal with problems of separating relevant from irrele-
vant information in some way”. This paper is concerned with structural
complexity issues regarding the selection of relevant Prototypes or Fea-
tures. We give the first results proving that both problems can be much
harder than expected in the literature for various notions of relevance. In
particular, the worst-case bounds achievable by any efficient algorithm
are proven to be very large, most of the time not so far from trivial
bounds. We think these results give a theoretical justification for the nu-
merous heuristic approaches found in the literature to cope with these
problems.

1 Introduction

With the development and the popularization of new data acquisition technolo-
gies such as the World Wide Web (WWW), computer scientists have to analyze
potentially huge data sets. The available technology to analyze data has been
developed over the last decades, and covers a broad spectrum of techniques and
algorithms. The overwhelming quantities of such easy data represent however a
noisy material for learning systems, and filtering it to reveal its most informative
content has become an important issue in the fields of Machine Learning (ML)
and Data Mining.

In this paper, we are interested in two important aspects of this issue: the
problem of selecting the most relevant examples (named prototypes), a problem
to which we refer as ”Prototype selection” (PS), and the problem of selecting the
most relevant variables, a problem to which we refer as ”Feature selection” (FS).
Numerous works have addressed empirical results about efficient algorithms for
PSand FS | , , , , , ,] and many others.
However, in comparison, very few results have addressed the theoretical issues of

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 224-238, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Sharper Bounds for the Hardness of Prototype and Feature Selection 225

both PS and FS, and more particularly have given insight into the hardness of
FS and PS. This is an important problem because almost all efficient algorithms
presented so far for PS or F'S are heuristics, and no theoretical results are given
for the guarantees they give on the selection process. The question of their behav-
ior in the worst case is therefore of particular importance. Structural complexity
theory can be helpful to prove lowerbounds valid for any time-efficient algorithm,
and negative results for approximating optimization problems are important in
that they may indicate we can stop looking for better algorithms |]. On
some problems |], they have even ruled out the existence of efficient
approximation algorithms in the worst case.

In this paper, we are interested in PS and FS as optimization problems. So
far, one theoretical result exists [], which links the hardness of approximat-
ing FS and the hardness of approximating the MIN-SET-COVER problem. We
are going to prove in that paper that PS and FS are very hard problems for var-
ious notions of what is "relevance”, and our results go far beyond the negative
results of |]. The main difficulty in our approach is to capture the essential
notions of relevance for PS and FS. As underlined in |], there are many def-
initions for relevance, principally motivated by the question ”relevant to what?”,
and addressing them separately would require large room space. However, these
notions can be clustered according to different criteria, two of which seem to be
of particular interest. Roughly speaking, relevance is generally to be understood
with respect to a distribution, or with respect to a concept. While the former
encompasses information measures, the latter can be concerned with the target
concept (governing the labeling of the examples) or the hypothesis concept built
by a further induction algorithm. In this work, we have chosen to address two
notions of relevance, each representative of one cluster, for each of the PS and
FS problems.

We prove for each of the four problems, that any time-efficient algorithm
shall obtain very bad results in the worst case, much closer than expected to
the ”performances” of approaches consisting in not (or randomly) filtering the
data ! From a practical point of view, we think our results give a theoretical
justification to heuristic approaches of FS and PS. While these hardness results
have the advantage of covering the basic notions of relevance found throughout
the literature (of course by investigating four particular definitions of relevance),
they have two technical commonpoints. First, the results are obtained by reduc-
tion from the same problem (MIN-SET-COVER), but they do not stem from
a simple coding of the instance of MIN-SET-COVER. Second, the proofs are
standardized: they all use the same reduction tool but in a different way. From a
technical point of view, the reduction technique makes use of blow-up reductions,
a class of reductions between optimization problems previously sparsely used in
Computational Learning Theory | , ,]. Informally, blow-up
reductions (also related to self-improving reductions, |]) are reductions
which can be made from a problem onto itself: the transformation is such that

226 Richard Nock and Marc Sebban

it depends on an integer d which is used to tune the hardness result: the higher d,
the larger the inapproximability ratio obtained. Of course, there is a price to
pay : the reduction time is also an increasing function of d; however, sometimes,
it is possible to show that the inapproximability ratio can be blown-up e.g. up
to exponent d, whereas the reduction time increases reasonably as a function
of d |]

The remaining of this paper is organized as follows. After a short preliminary,
the two remaining parts of the paper address separately PS and F'S. Since all our
results use reductions from the same problem, we detail one proof to explain the
nature of self-improving reductions, and give proof sketches for the remaining
results.

2 Preliminary

Let LS be some learning sample. Each element of LS is an example consisting
of an observation and a class. We suppose that the observations are described
using a set V of n Boolean (0/1) variables, and there are only two classes, named
"positive” (1) and "negative” (0) respectively. The basis for all our reductions
is the minimization problem MIN-SET-COVER:

NAME: MIN-SET-COVER.

INSTANCE: a collection C' = {ec1, ¢, ..., cjo|} of subsets of a finite set S =
{s1,52,..., 55/} (].| denotes the cardinality).

SOLUTION: a set cover for S, i.e. a subset C' C C such that every element
of S belongs to at least one member of C'.

MEASURE: cardinality of the set cover, i.e. |C'].

The central theorem which we use in all our results is the following one.

Theorem 1. [, | Unless NP C DTIM E[n!°81°8"] the problem
MIN-SET-COVER is not approximable to within (1 — €)log|S| for any e > 0.

By means of words, theorem 1 says that any (time) efficient algorithm shall not
be able to break the logarithmic barrier log|S|, that is, shall not beat signifi-
cantly in the worst case the well-known greedy set cover approximation algo-
rithm of |]. This algorithm guarantees to find a solution to any instance of
MIN-SET-COVER whose cost, |C’|, is not larger than

O(log |S]) x opt\fN-SET-COVER>

where opty[N-SET-CovEr 1S the minimal cost for this instance.

In order to state our results, we shall need particular complexity classes based
on particular time requirement functions. We say that a function is polylog(n)
if it is O(log®n) for some constant ¢, and quasi-polynomial, QP(n), if it is
(9(npolylog(n)).

Sharper Bounds for the Hardness of Prototype and Feature Selection 227

3 The Hardness of Approximating Prototype Selection

A simple and formal objective to prototype selection can be thought of as an
information preserving problem as underlined in |]. Fix some function f :
[0,1] — [0, 1] satisfying the following properties:

1. f is symmetric about 1/2,
2. J(1/2) = 1 and £(0) = /(1) = 0,

3. f is concave.

Such functions are called permissible in []. Clearly, the binary entropy
H(z) = —zlog(x) — (1 — z)log(l — x),
the Gini criterion
G(z) =4z(1 —x)
[] and the criterion
Alz) =2y/z(1 —)

used in | ,] are all permissible. Define p; (L.S) as the fraction of positive
examples in LS, and po(LS) as the fraction of negative examples in LS. Define
LS,—, to be for some variable v the subset of LS in which all examples have
value a (€ {0,1}) for v. Finally, define the quantity I¢(v, LS) defined as

| LSy
LS|

Sy=
et o (25,00

1(0, LS) = f(pu(LS)) (1 (o)) +

This quantity, with f replaced by the functions H(x),G(x) or A(x), repre-
sents the common information measure to split the internal nodes of decision
trees in all state-of-the-art decision tree learning algorithms (see for exam-

ple [))))])

One objective in prototype selection can be to reduce the number of examples
in LS while ensuring that any informative variable before will remain informative
after the removal. The corresponding optimization problem, which we call MIN-
PS; (for any f belonging to the category fixed above), is the following one:

NAME: MIN-PSy

INSTANCE: a learning sample LS of examples described over a set of n vari-
ables V = {v1,va, ..., v, }.

SOLUTION: a subset LS’ of LS such that V1 < i < n,I;(v;,LS) > 0 =
Iy (v, LS") > 0.

MEASURE: |LS’|.

There are two components in the self-improving reduction. The first one is
to prove a basic inapproximability theorem. The second one, an amplification
lemma, ”blows-up” the result of the theorem. Then, we give some consequences
illustrating the power of the amplification lemma.

228 Richard Nock and Marc Sebban

Theorem 2. Unless NP C DTIME[n'°8°e"] MiN-PS; is not approzimable
to within (1 — €)logn for any e > 0.

Proof. We show that MIN-P Sy is as hard to approximate as MIN-SET-COVER:
any solution to MIN-SET-COVER can be polynomially translated to a solution
to MIN-PSy of the same cost, and reciprocally. Given an instance of MIN-SET-
COVER, we build a set LS of |C| positive examples and 1 negative example, each
described over |S| variables. We define a set {v1,v2, ..., vg } of Boolean variables,
in one-to-one correspondence with the elements of S. The negative example is
the all-0 example. Each positive example is denoted ey, €2, ..., €/c|. We construct
each positive example e; so that it encodes the content of the corresponding
set ¢; of C. Namely, e;[k] is 1 iff s € ¢;, and 0 otherwise. Here we suppose
obviously that each element of S is element of at least one element of C', which
means that V1 < i <n,I(v;, LS) > 0. Suppose there exists a solution to MIN-
SET-COVER of cost ¢. Then, we put in LS’ the negative example, and all positive
examples corresponding to the solution to MIN-SET-COVER. We see that for any
variable vj, there exists some positive example of LS’ having 1 in its 4t com-
ponent, since otherwise the solution to MIN-SET-COVER would not cover the
elements of S. It is straightforward to check that V1 < i < n, I;(v;, LS") > 0,
which means that LS’ is a solution to MIN-PS; having cost ¢ + 1.

Now, suppose that there exists a feasible solution to MIN-PSy, of size c.
There must be the negative example inside LS’ since otherwise we would have
V1 < i < n,If(v;, LS") = 0. Consider all elements of C' corresponding to the
c — 1 positive examples of LS’. If some element s; of S were not covered, the
variable v; would be assigned to zero over all examples of LS’, be they positive
or negative. In other words, we would have I¢(v;, LS") = 0, which is impossible.
In other words, we have build a solution of MIN-SET-COVER of cost ¢ — 1.

If we denote optyn-SET-Cover and optyn-ps the optimal costs of the
problems, we have immediately optyn.PS = OPtMIN-SET-Cover + 1. A possi-
ble interpretation of theorem 1 is the following one []: there exists some
O(n'°&1oe ™) time reduction from some N P-hard problem, say “SAT” for exam-
ple, to MIN-SET-COVER, such that

— to any satisfiable instance of “SAT” corresponds a solution to MIN-SET-
COVER whose cost is «,

— unsatisfiable instance of “SAT” are such that any feasible solution to MIN-
SET-COVER will be of cost > a(1 — €)log|S] for any € > 0.

This property is also called a hard gap in |].
If we consider the reduction from MIN-SET-COVER to MIN-PS¢, we see that
the ratio between unsatisfiable and satisfiable instances of “SAT” is now
_a(l—¢e)logn+1
p= a+1

For any € > 0, if we choose 0 < € < € (this is authorized by theorem 1), we
have p > (1 — ¢')logn for MIN-PSy, at least for sufficiently large instances of

Sharper Bounds for the Hardness of Prototype and Feature Selection 229

“SAT”. This concludes the proof of the theorem. O

The amplification lemma is based on the following self-improving reduction.
Fix some integer value d > 1. Suppose we take again the instance of MIN-
SET-COVER, but we create |S|¢ variables instead of the initial |S|. Each variable
represents now a d-tuple of examples. Suppose we number the variables v;, i, .. i,
with i1,142,...,74 € {1,2,...,]S]|}, to represent the corresponding examples. The
|C| + 1 old examples are replaced by |C|? + 1 examples described over these
variables, as follows:

— for any possible d-tuple (c;,, ¢j,, ..., ¢;,) of elements of C, we create a positive
example e;, j, .. j,, having ones in variable v;, 4, ... 4, iff

Vk € {1,2, ,d},st <€ Cjps

and zeroes everywhere else. Thus, the Hamming weight of the example’s
description is exactly szl |cj, |- By this procedure, we create |C|? positive
examples,

— we add the all-zero example, having negative class.

We call LS this new set of examples. Note that the time made for the reduction
is no more than O(|S|¢|C|?). The following lemma exhibits that the inapproxima-
bility ratio for MIN-P S actually grows as a particular function of d provided d
is confined to reasonable values, in order to keep an overall reduction time not
greater than O(n!°&!s ™). Informally, this assumption allows to use the inap-
proximability ratio of theorem 1 for our reduction. For the sake of simplicity
in stating the lemma, we say that the reduction is feasible to state that this
assumption holds.

Lemma 1. Unless NP C DTIM E[n'°8'°8 "] provided the reduction is feasible,
then MIN-PS¢ is not approzimable to within

((1 - Zlogny

Proof. Again, we suppose obviously that each element of S is element of at least
one element of C'; which means that each variable v;, ;, .., has

for any € > 0.

I4(viy i, i LSa) > 0

Note that any feasible solution to MIN-P Sy contains the negative example (same
reason as for theorem 2). Also, in any solution C" = {c},c, ..., ¢/} to MIN-
SET-COVER, the following property P is satisfied without loss of generality: any
element of C' belonging to it has at least one element (of S) which is present
in no other element of C’, since otherwise the solution could be transformed
in polynomial time into a solution of lower cost (simply remove arbitrarily ele-
ments in C’ to satisfy P while keeping a cover of S). As P is satisfied, we call

230 Richard Nock and Marc Sebban

any subset of cardinality |C’| of S containing one such distinguished element for
each element of C a distinguished subset of S. Finally, remark that MIN-PS is
equivalent to the problem of covering the set S using elements of C?, and the
minimal number of positive examples in LSy is exactly the minimal cost ¢’ of
the instance of this generalization of MIN-SET-COVER. But, since P holds, cov-
ering C? requires to cover any d-tuple of distinguished subsets of S and because
property P holds, ¢’ is at least ¢? where ¢ is the optimal cost of the instance
of MIN-SET-COVER. Also, if we take all d-tuples of elements of C’ feasible so-
lution to MIN-SET-COVER, we get a feasible solution to the generalization of

MIN-SET-COVER, which leads to the equality ¢/ = c?.

If we denote optyn.ps the optimal cost of MIN-PS; on the new set of
examples LSy, we obtain that

d
OPtMN-PS = (OPtMiIN-SET-CovER) T 1

Given that n = |S|¢, and using the same ideas as for theorem 2, we obtain the
statement of the lemma. [m|

What can we hope to gain by using lemma 1, which was not already proven by
theorem 2 7 It is easy to show that the largest inapproximability ratio authorized
by the same complexity assumption is

o (£)
p = log n (1)
(by taking d = O(loglogn)), which implies the simpler one:

Theorem 3. Unless NP C DTIME[n'°8°e"] MIN-PS; is not approximable
to within

1—e¢)loglogn

log(n

for any e > 0.

Another widely encountered complexity hypothesis, stronger than the one of
theorem 3, is that NP ¢ QP [CK00]. In that case, the result of theorem 3
becomes stronger:

Theorem 4. Unless NP C QP, 36 > 0 such that MIN-PS¢ is not approzimable
to within n?.

Proof. We prove the result for § < 1/e, and take d = (1 —9) logn. A good choice
of € in theorem 2 proves the result. O

The preceeding model takes into account the information of the variables to
select relevant prototypes. We now give a model for prototype selection based
on the notion of relevance with respect to a concept. For any set of examples
LS, denote as Copt(LS) the set of concept representations having minimal size,
and consistent with LS. The notion of size can be e.g. the overall number of

Sharper Bounds for the Hardness of Prototype and Feature Selection 231

variables of the concept (if a variable appears ¢ times, it is counted ¢ times).
The nature of the concepts is not really important: these could be decision
trees, decision lists, disjunctive normal form formulas, linear separators, as well
as simple clauses. Our negative results will force the concepts of Copt(LS) to
belong to a particularly simple subclass, expressible in each class. This notion
of relevance is closely related to a particular kind of ML algorithms in which
we seek consistent formulas with limited size: Occam’s razors | ,]
Formulated as an optimization problem, the MIN-PS problem is the following
one:

NAME: MIN-PS.

INSTANCE: a learning sample LS of examples described over a set of variables
{U1, V2, .eey ’Un}.

SOLUTION: a subset LS” of LS such that Copi(LS’) C Copt(LS).

MEASURE: |LS’|.

By means of words, PS is a problem of reducing the number of examples while
ensuring that concepts consistent and minimal with respect to the subset of
prototypes will also be valid for the whole set of examples. Our first result on
the inapproximability of this new version of MIN-PS is the following one.

Theorem 5. Unless NP C DTIM E[n'°8'°e"] MIN-PS is not approzvimable to
within (1 — €)logn for any € > 0.

Proof. (sketch) The proof resembles the one of theorem 2. Given an instance
of MIN-SET-COVER, we build a set LS of |S| positive examples and 1 negative
example, each described over |C| variables. We define a set {vi,v,...,v|¢|} of
Boolean variables, in one-to-one correspondence with the elements of C. The neg-
ative example is the all-0 example. Each positive example is denoted ey, ea, ..., €/
We construct each positive example e; so that it encodes the membership of s;
into each element of C. Namely, e;[k] is 1 iff s; € cx, and 0 otherwise. Similarly
to theorem 2, the least number of examples which can be kept is exactly the cost
of the optimal solution to MIN-SET-COVER, plus one.

The proof is similar to that of theorem 2, with the following remark on the
minimal concepts. It can be shown that minimal concepts belonging to each of
the classes cited before (trees, lists, etc.) will contain a number of variables equal
to the minimal solution to MIN-SET-COVER, and each will be present only once.
The reduction is indeed very generic and similar results were previously obtained
by e.g. [| (for linear separators and even multilinear polynomials), |]
(for decision lists), [, | (for decision trees), [] (for Disjunctive
Normal Form formulas and simple clauses). From that, all minimal concepts will
be equivalent to a simple clause whose variables correspond to C’. Property P
in lemma 1 can still be used. O

The amplification lemma follows from a particular self-improving reduction.
Again, fix some integer value d > 1. Suppose we take again the instance of MIN-
SET-COVER, but we create d|C| variables instead of the initial |C|. Each variable

232 Richard Nock and Marc Sebban

is written v; ; to denote the j'* copy of initial variable i, with i = 1,2,....|C]|
and j = 1,2,...,d. The |S| + 1 old examples are replaced by |S|? + 1 examples
described over these variables, as follows:

— for any possible d-tuple (s;,,sj,, ..., s;,) of elements of S, we create a posi-
tive example e;, j, .. j,, having ones in variable vy iff s;, € cx, and zeroes
everywhere else. By this procedure, we create |C|? positive examples,

— we add the all-zero example, having negative class.

We call LS, this new set of examples. Note that the time made for the reduc-
tion is no more than O(|S|?|C|%). The following lemma is again stated under
the hypothesis that the reduction is feasible, that is, takes no more time than
O(nloslos ™), to keep the same complexity assumption as in theorem 1 (proof
omitted).

Lemma 2. Unless NP C DTIME[n'°8'°8"] provided the reduction is feasible,
then MIN-PS is not approzimable to within

(0-aa2))’

for any € > 0.

What can we hope to gain by using lemma 2, which was not already proven by
theorem 5 7 It is easy to show that the largest inapproximability ratio authorized
by the same complexity assumption is now

p = logloglos(metsm) ™ (2)

which in turn implies the following one (greater than eq. 1):

Theorem 6. Unless NP C DTIM E[n'°8'°e"] MIN-PS is not approzvimable to
within

log log(nlfé)

log n

for any € > 0.
With a slightly stronger hypothesis (and using d = O(polylog(n))), we obtain

Theorem 7. Unless NP C QP, Ve > 0, MIN-PS is not approximable to within
nlogc nloglog logn‘

With respect to 1, lemma 2 brings results much more negative provided stronger
complexity assumptions are made. [| make the very strong complexity as-
sumption NP ¢ DTIME (2”9(1)). This is the strongest complexity assumption,
since NP is definitely contained in DTIME(QPOly(”)). Using this hypothesis
with d = n?(M) | we obtain the following, very strong result:

Theorem 8. Unless NP C DTIME(Q”Q(”), Iy > 0 such that MIN-PS is not

approximable to within
2717 loglogn

Sharper Bounds for the Hardness of Prototype and Feature Selection 233

What theorem 8 says is that approximating prototype selection up to exponential

ratios o)
o’

will be hard. Note that storing the examples would require 2™ examples in the

worst case. Up to what is precisely hidden in the 7 notation, approximating

MiIN-PS might not be efficient at all with respect to the storing of all examples.

4 The Hardness of Approximating Feature Selection

The first model of feature selection is related to the distribution of the examples
in LS. Let V; be the set of all variables except v;, i.e.

V;; = {01,7)2, ey UVg— 15 Uip 1y ey ’Un}

Denote by v\; a value assignment to all variables in V;.

Definition 1. [| A wvariable v; is strongly relevant iff there exists some
v, y and v\; for which Pr(v; = v,V; = v\;) > 0 such that

Pr(Y = ylvi = v, Vi = v\;) # Pr(Y = y|V; = v\;)

Definition 2. /[| A wariable v; is weakly relevant iff it is not strongly
relevant, and there exists a subset of features V' of V; for which there exists
some v, y and vii with Pr(v; = v,V/ = v’\l) > 0 such that

Pr(Y =ylvi =0, V] = ;) # Pr(Y = y|V] = v{;)

In other words, a feature is weakly relevant if it becomes strongly relevant af-
ter having deleted some subset of features. We now show that under these two
definitions are hidden algorithmic problems of very different complexities. We
formulate the selection of relevant features as an optimization problem by focus-
ing on the class conditional probabilities, following the definition of coherency
which we give below:

Definition 3. Given a whole set V' of features with which LS is described, a
subset V' of V is said to be coherent iff for any class y and any observation s
described with V' whose restriction to V' is noted s', we have

PI‘(Y = y|V = 3) = Pr(Y — y|V’ — 5')

By means of words, coherency aims at keeping the class conditional probabilities
between the whole set of variables and the selected subset. Formulated as an
optimization problem, the MIN-S-F'S problem is the following one:

— NAME: MIN-S-FS.
— INSTANCE: a learning sample LS of examples described over a set of variables
V = {’Ul, V2, .eny ’l)n}.

234 Richard Nock and Marc Sebban

— SOLUTION: a coherent subset V' of V' containing strongly relevant features
w.r.t. LS.
— MEASURE: |V’|.

The MIN-W-FS problem is the following one:

— NAME: MIN-W-FS.

— INSTANCE: a learning sample LS of examples described over a set of variables
V= {Ula U2y ..y vn}'

SOLUTION: a coherent subset V' of V' containing weakly relevant features
w.r.t. LS.

MEASURE: |V’|.

Since strong relevance for a variable is not influenced by its peers, we easily
obtain the following theorem

Theorem 9. Minimizing MIN-S-F'S is polynomial.
We now show that MIN-W-F'S is much more difficult to approximate.

Theorem 10. Unless NP C DTIME[n!°8°¢"] MIN-W-FS is not approzx-
imable to within (1 — €)logn for any € > 0.

Proof. The reduction is the same as for theorem 5. O

The result of theorem 10 shows that MIN-W-FS is hard, but it does not
rule out the possibility of efficient feature selection algorithms, since the ratio
of inapproximability is quite far from critical bounds of order n” (given that
the number of features is n). We now show that theorem 10 is also subject to
be amplified so that we can effectively remove the possibility of efficient feature
selection. Fix some integer value d > 1. Suppose we take again the instance
of MIN-SET-COVER of theorem 5, but we create |C|¢ variables instead of the
initial |C|. Each variable represents now a d-tuple of elements of C'. Suppose we
number the variables v;, 4,. . ;, With i1,12,...,74 € {1,2,...,|C|}, to represent the
corresponding elements of C. The |S|+ 1 old examples are replaced by |S|¢ + 1
examples described over these variables, as follows:

— for any possible d-tuple (sj,, $j,, ..., 85,) of elements of S, we create a positive

example e;, j, . 5., having ones in variable v;, 4,.... 4, iff

Vk € {1’27"'7d}75jk € Cjps

and zeroes everywhere else. By this procedure, we create |S|¢ positive exam-
ples,
— we add the all-zero example, having negative class.

We call LS, this new set of examples. The reduction time is no more than
O(|S|4|C|%). The following lemma is stated under the same hypothesis as for
lemma 2.

Sharper Bounds for the Hardness of Prototype and Feature Selection 235

Lemma 3. Unless NP C DTIME[n'°8'°8"] provided the reduction is feasible,
MIN-W-FS is not approrimable to within

((1210gn)d

An immediate consequence is the following.

for any € > 0.

Theorem 11. Unless NP C QP, 35 > 0 such that MIN-W-FS is not approz-

imable to within n?.

In other words, up to what is be the maximal §, theorem 11 shows that any
non trivial algorithm cannot achieve a significant worst-case approximation of
the MIN-W-F'S problem, with respect to the simple keeping of all variables.

Our second model for feature relevance defines it with respect to the target
concept |]

Definition 4. [| A variable v; is said to be relevant to the target concept ¢
iff there exists a pair of examples e4 and ep in the instance space such that their
observations differ only in their assignment to v; and they have a different class.

From this, |] define the following complexity measure.

Definition 5. [| Given a sample LS and a set of concept C, r(LS,C) is
the number of features relevant using definition 4 to a concept in C that, out of
all those whose error over LS is least, has the fewest relevant features.

We call Cp,in(LS) to be the set of concepts from C whose error on LS is least.
It is straightforward to check that in definition 5, r(LS,C) defines the optimum
of the following minimization problem.

NaME: MIN-FS.

INSTANCE: a learning sample LS of examples described over a set of variables
V = {v1,v9,...,v,}, a class of concept C.

SOLUTION: a subset V' of V such that there exists a concept in Cpin(LS)
which is described over V.

MEASURE: the cardinality of the subset of V' consisting of relevant features
according to definition 4.

A result stated in the paper of |] says that MIN-FS is at least as hard to
approximate as the MIN-SET-COVER problem (thus, we get the inapproxima-
bility ratio of theorem 1). On the other hand, the greedy set cover algorithm
of |] can be used to approximate r(LS,C) when C is chosen to be the set
of monomials. If we follow [] using a comment of |], the number of
variables chosen is no more than

r(LS, monomials) x log |LS|,

236 Richard Nock and Marc Sebban

but |LS| can theoretically be as large as 2. The question is therefore to what
extent we can increase the inapproximability ratio to come as close as possible
to the trivial barrier n (we keep all variables). Actually, it can easily be shown
that the amplification result of lemma 1 still holds with the reduction allowing
to prove the equivalence of MIN-SET-COVER and MIN-FS. Therefore, we get

Lemma 4. Unless NP C DTIME[n'°8'°8™] provided the reduction is feasible,
then MIN-F'S is not approximable to within

((1 - eélogn)d

Similarly to theorem 4, we also get as a consequence:

for any € > 0.

Theorem 12. Unless NP C QP, 36 > 0 such that MIN-F'S is not approzimable
to within n’.

References

[ACGT99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, Marchetti Spaccamela
A., and Protasi M. Complexity and Approzimation. Combinatorial Opti-
mization Problems and their Approximability Properties. Springer-Verlag,
Berlin, 1999. 226

[Aro94] S. Arora. Probabilistic checking of proofs and hardness of approximation
problems. Technical Report CS-TR-476-94, Princeton University, 1994.
225, 228

[Bel96] M. Bellare. Proof checking and Approximation: towards tight results.

SIGACT news, 1996. 225, 228

[BFOS84] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J. Stone. Classification
and Regression Trees. Wadsworth, 1984. 227

[BL97] A. Blum and P. Langley. Selection of relevant features and examples in
machine learning. Artificial Intelligence, pages 245-272, 1997. 225, 227,
235

[Blu94] A. Blum. Relevant examples and relevant features: Thoughts from compu-
tational learning theory. In AAAI Fall Symposium (survey paper), 1994.
224

[CKO00] P. Crescenzi and V. Kann. A Compendium of NP-Optimization problems.
WWW-Available at http://www.nada.kth.se/~viggo/wwwcompendium/,
2000. 226, 230

[HJLT94] T. Hancock, T. Jiang, M. Li, and J. Tromp. Lower bounds on learning
decision lists and trees. In Proc. of the Symposium on Theoretical Aspects
of Computer Science, 1994. 225, 231

[HR76] L. Hyafil and R. Rivest. Constructing optimal decision trees is np-
complete. Inform. Process. Letters, pages 15-17, 1976. 231

[JKP94] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the
subset selection problem. In Proc. of the 11 " International Conference
on Machine Learning, pages 121-129, 1994. 233

Sharper Bounds for the Hardness of Prototype and Feature Selection 237

[JohT74]

[KKLPY7]

[KMO6]

[Koh94]

[KS95]

[KS96]

[KV94]
[Mit97]
[NG95]
[NJ98a]
[NJ98b]
[NJS98]

[Noc9g]

[PRO4]

[Qui94]

[Ska94]

[SNO0Oa]

[SNOOb)]

[SS98]

D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sci., pages 256278, 1974. 226, 235

V. Kann, S. Khanna, J. Lagergren, and A. Panconesi. On the hardness of
approximating MAX k-CUT and its dual. Chicago Journal of Theoretical
Computer Science, 2, 1997. 225

M.J. Kearns and Y. Mansour. On the boosting ability of top-down decision
tree learning algorithms. Proceedings of the Twenty-FEighth Annual ACM
Symposium on the Theory of Computing, pages 459468, 1996. 227

R. Kohavi. Feature subset selection as search with probabilistic estimates.
In AAAI Fall Symposium on Relevance, 1994. 224

R. Kohavi and D. Sommerfield. Feature subset selection using the wrapper
model: overfitting and dynamic search space topology. In First Interna-
tional Conference on Knowledge Discovery and Data Mining, 1995. 224
D. Koller and R. M. Sahami. Toward optimal feature selection. In Proc.
of the 13 ™" International Conference on Machine Learning, 1996. 224
M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learn-
ing Theory. M.IT. Press, 1994. 231, 235

T. Mitchell. Machine Learning. McGraw-Hill, 1997. 227

R. Nock and O. Gascuel. On learning decision committees. In Proc. of
the 12 *" International Conference on Machine Learning, pages 413420,
1995. 231

R. Nock and P. Jappy. Function-free horn clauses are hard to approxi-
mate. In Proc. of the Fighth International Conference on Inductive Logic
Programming, pages 195-204, 1998. 225

R. Nock and P. Jappy. On the power of decision lists. In Proc. of the 15 **
International Conference on Machine Learning, pages 413-420, 1998. 231
R. Nock, P. Jappy, and J. Sallantin. Generalized Graph Colorability and
Compressibility of Boolean Formulae. In Proc. of the 9" International
Symp. on Algorithms and Computation, pages 237-246, 1998. 225, 226,
231

R. Nock. Learning logical formulae having limited size : theoretical aspects,
methods and results. PhD thesis, Université Montpellier II, 1998. Also
available as techreport RR-LIRMM-98014. 231

K. Pillaipakkamnatt and V. Raghavan. On the limits of proper learn-
ability of subclasses of DNF formulae. In Proc. of the 7" International
Conference on Computational Learning Theory, pages 118-129, 1994. 232
J. R. Quinlan. C4.5 : programs for machine learning. Morgan Kaufmann,
1994. 227

D. B. Skalak. Prototype and feature selection by sampling and random
mutation hill-climbing algorithms. In FEleventh International Conference
on Machine Learning, pages 293-301, 1994. 224

M. Sebban and R. Nock. Combining feature and prototype pruning by
uncertainty minimization. In Proc. of the 16 ** International Conference
on Uncertainty in Artificial Intelligence, 2000. to appear. 224

M. Sebban and R. Nock. Prototype selection as an information-preserving
problem. In Proc. of the 17 *" International Conference on Machine Learn-
ing, 2000. to appear. 224

R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. In Proceedings of the Eleventh Annual ACM
Conference on Computational Learning Theory, pages 80-91, 1998. 227

238 Richard Nock and Marc Sebban

[WM97] D. Wilson and T. Martinez. Instance pruning techniques. In Proc. of the
14 " International Conference on Machine Learning, pages 404-411, 1997.
224

On the Hardness of Learning
Acyclic Conjunctive Queries

Kouichi Hirata *

Department of Artificial Intelligence
Kyushu Institute of Technology
Kawazu 680-4, lizuka 820-8502, Japan
hirata@ai.kyutech.ac. jp

Abstract. A conjunctive query problem in relational database theory is
a problem to determine whether or not a tuple belongs to the answer of a
conjunctive query over a database. Here, a tuple and a conjunctive query
are regarded as a ground atom and a nonrecursive function-free definite
clause, respectively. While the conjunctive query problem is NP-complete
in general, it becomes efficiently solvable if a conjunctive query is acyclic.
Concerned with this problem, we investigate the learnability of acyclic
conjunctive queries from an instance with a j-database which is a finite
set of ground unit clauses containing at most j-ary predicate symbols.
We deal with two kinds of instances, a simple instance as a set of ground
atoms and an extended instance as a set of pairs of a ground atom and a
description. Then, we show that, for each j7 > 3, there exist a j-database
such that acyclic conjunctive queries are not polynomially predictable
from an extended instance under the cryptographic assumptions. Also
we show that, for each n > 0 and a polynomial p, there exists a p(n)-
database of size O(2P) such that predicting Boolean formulae of size
p(n) over n variables reduces to predicting acyclic conjunctive queries
from a simple instance. This result implies that, if we can ignore the
size of a database, then acyclic conjunctive queries are not polynomially
predictable from a simple instance under the cryptographic assumptions.
Finally, we show that, if either j = 1, or j = 2 and the number of element
of a database is at most [(> 0), then acyclic conjunctive queries are pac-
learnable from a simple instance with j-databases.

1 Introduction

From the viewpoints of both computational/algorithmic learning theory and
inductive logic programming, DZzeroski et al. [11] have first shown the learnability
of (first-order) definite programs, called ij-determinate. Furthermore, the series
of their researches, Cohen [5-7, 9], Dzeroski [11, 12, 21], Kietz [20-22] and Page [9,
26] have placed the theoretical researches for the learnability of logic programs
in one of the main research topics in inductive logic programming. Recently, it
has been deeply developed as [1, 18,23, 24, 29, 30].

* This work is partially supported by Japan Society for the Promotion of Science,
Grants-in-Aid for Encouragement of Young Scientists (A) 11780284.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 238-250, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

On the Hardness of Learning Acyclic Conjunctive Queries 239

On the other hand, a conjunctive query problem in relational database the-
ory [2,4,14,16,34] is a problem to determine whether or not a tuple belongs
to the answer of a conjunctive query over a database. Here, a tuple, a con-
junctive query, and a database in relational database theory are regarded as
a ground atom e = p(t1,...,t,), a nonrecursive function-free definite clause
C =p(x1,...,2n) «— A1,..., Ay, and a finite set B of ground unit clauses in
inductive logic programming. Then, we can say that it is a problem to determine
whether or not e is provable from C over B, i.e., {C} UB | e.

Since database schemes in relational database theory can be viewed as hyper-
graphs, many researchers such as [2,4, 13,14, 16, 34] have widely investigated the
properties of database schemes or hypergraphs, together with the acyclicity of
them!. It is known that the acyclicity frequently makes intractable problems in
cyclic cases tractable. The conjunctive query problem is such an example: While
the conjunctive query problem is NP-complete in general [15], Yannakakis has
shown that it becomes solvable in polynomial time if a conjunctive query is
acyclic [34]. Recently, Gottlob et al. have improved the Yannakakis’s result that
it is LOGCFL-complete [16].

The above acyclicity of a conjunctive query C' is formulated by the associated
hypergraph H(C) = (V, E) to C. Here, V consists of all variables occurring in C
and F contains the set var(A) of all variables in A for each atom A in C. Then,
a conjunctive query C'is acyclic if H(C') is acyclic, and a hypergraph is acyclic if
it is reduced to an empty hypergraph by GYO-reduction (see Section 2 below).

Concerned with the conjunctive query problem, in this paper, we investigate
the learnability of acyclic conjunctive queries from an instance with a j-database
which is a database containing at most j-ary predicate symbols.

According to Cohen [5-7], we deal with two kinds of instances, a simple
instance and an extended instance. A simple instance, which is a general setting
in learning theory, is a set of ground atoms. On the other hand, an extended
instance, which is a proper setting for inductive logic programming, is a set of
pairs of a ground atom and a description. Note that, if an extended instance
is allowed, then many programs that are usually written with function symbols
can be rewritten as function-free programs. Furthermore, some experimental
learning systems such as FOIL [28] also impose a similar restriction.

The acyclic conjunctive query problem, which is LOGCFL-complete men-
tioned above, is corresponding to the evaluation problem of our learning prob-
lem. Schapire [32] has shown that, if the corresponding evaluation problem is
NP-hard, then the learning problem is not pac-learnable unless NPCP/Poly.
Then, we cannot apply Schapire’s result to our problem. Furthermore, since all
of the Cohen’s hardness results are based on the prediction preserving reduc-
tions to cyclic conjunctive queries [6, 7], we cannot apply them to our problem
directly, while our prediction preserving reduction is motivated by them.

In this paper, first we prepare some notions and definitions due to Cohen [5—
7]. Then, we show that, for each j > 3, there exist a j-database such that
acyclic conjunctive queries are not polynomially predictable from an extended

! Note here that the concept of acyclicity is different from one in [1,29].

240 Kouichi Hirata

instance under the cryptographic assumptions. In contrast, we show that, for
each n > 0 and a polynomial p, there exists a p(n)-ary database of size O(2P("))
such that predicting Boolean formulae of size p(n) over n variables reduces to
predicting acyclic conjunctive queries from a simple instance. This result implies
that if we can ignore the size of a database, then acyclic conjunctive queries are
not polynomially predictable from a simple instance under the cryptographic
assumptions. Finally, we show that, if either j = 1, or j = 2 and the number
of element of a database is at most [(> 0), then acyclic conjunctive queries are
pac-learnable from a simple instance with j-databases.

Our hardness of learning acyclic conjunctive queries implies that they become
a typical example that collapses the equivalence between pac-learnability and
subsumption-efficiency. In general, the subsumption problem for nonrecursive
function-free definite clauses is NP-complete [3,15]. It is also known that, for
both famous ij-determinate and k-local clauses, the subsumption problems for
them are solvable in polynomial time [22] and they are pac-learnable from a
simple (also an extended) instance [7,9,11]. In contrast, for acyclic conjunctive
queries, while the subsumption problem is LOGCFL-complete [16], it is not
polynomially predictable from an extended instance under the cryptographic
assumptions.

2 Preliminaries

In this paper, a term is either a constant symbol or a variable. An atom is of the
form p(t1,...,t,), where p is an n-ary predicate symbol and each ¢; is a term. A
literal is an atom or the negation of an atom. A positive literal is an atom and
a negative literal is the negation of an atom. A clause is a finite set of literals.
A definite clause is a clause containing one positive literal. A unit clause is a
clause consisting of just one positive literal. By the definition of a term, a clause
is always function-free.
A definite clause C' is represented as

A Ay, Anor A AL AL A A,

where A and A; (1 < ¢ < m) are atoms. Here, an atom A is called the head of
C' and denoted by hd(C), and a set {A1,..., A} is called the body of C' and
denoted by bd(C).

A definite clause C' is ground if C' contains no variables. A definite clause C'
is nonrecursive if each predicate symbol in bd(C') is different from one of hd(C),
and recursive otherwise. Furthermore, a finite set of ground unit clauses is called
a database. A database is called a j-database if the arity of predicate symbols in
it is at most j.

According to the convention of relational database theory [2,14,16,34], in
this paper, we call a nonrecursive definite clause containing no constant symbols
a conjunctive query.

Next, we formulate the concept of acyclicity. A hypergraph H = (V| E) con-
sists of a set V of vertices and a set E C 2V of hyperedges. For a hypergraph

On the Hardness of Learning Acyclic Conjunctive Queries 241

H = (V,E), the GYO-reduct GYO(H) [2,13,14,16] of H is the hypergraph
obtained from H by repeatedly applying the following rules as long as possible:

1. Remove hyperedges that are empty or contained in other hyperedges;
2. Remove vertices that appear in < 1 hyperedges.

Definition 1. A hypergraph H is called acyclic if GYO(H) is the empty hy-
pergraph, i.e., GYO(H) = (0,0), and cyclic otherwise.

The associated hypergraph H(C') to a conjunctive query C is a hypergraph
(var(C),{var(L) | L € C}), where var(S) denotes the set of all variables oc-
curring in S. Each hyperedge {var(L)} is sometimes labeled by the predicate
symbol of L.

Definition 2 (Gottlob et al. [16]). A conjunctive query C is called acyclic
(resp., cyclic) if the associated hypergraph H(C) to C is acyclic (resp., cyclic).

Ezxample 1. Let Cy, Cy and C3 be the following conjunctive queries:

Cl = p(xla Z2, 1'3) — q(l'h yla&)v T(I% Y2, y?))v q(xdv 21 22)7 7‘(1‘1, T2, ZS)v

C2 = p(xla z2, 1'3) — q(l'h yla%)? 7‘(1‘2, Y2, yd)v q(xda 21, 22)7 7/.(1'17 T2, 23)7

C3 = p(xla T2, xd) — S(xla $2)7 S(ﬂfg, x3)7 S(ﬂfg, xl)'

Then, the associated hypergraphs H(C1), H(C3) and H(C3) to Cy, Cz and Cs
are described as Fig. 1. By the GYO-reduction, we can show that

GYO(H(Cl)) = ({xh L2, yQ}’ {{xlva}’ {xlva}’ {x27 yQ}}) 7& @’

but GYO(H(Cs)) = (0,0), so Cy is cyclic but Cy is acyclic. Furthermore, Cj
is acyclic, because the GYO-reduction first removes all hyperedges labeled by s
from H(Cj).

Fig. 1. The associated hypergraphs H(C1), H(C2) and H(C3) to C1, C2 and Cs.

In this paper, the relation F denotes a usual provability relation; For a con-
junctive query C = A «— Aj,..., A, a database B and a ground atom e,
{C} U Bt e holds iff

242 Kouichi Hirata

1. e€ Bor
2. there exists a substitution 6 such that e = Af and {440, ..., A,,0} C B.

Then, consider the following decision problem?:

ACQ (Acyclic Conjunctive Query) [16]

INSTANCE: An acyclic conjunctive query C' = p(x1,...,2Tn) «— A1,..., Am,
a database B, and a ground atom e = p(t1,...,t,).

QUESTION: Does {C} U B | ¢ hold?

Theorem 1 (Gottlob et al. [16]). The problem ACQ is LOGCFL-complete.

The relationship between LOGCFL and other relevant complexity classes is sum-
marized in the following chain of inclusions:

ACY C NC' C LOG C NLOG C LOGCFL C AC' € NC? C NC C P C NP,

where LOG denotes logspace and NLOG denotes nondeterministic logspace.

3 Models of Learnability

In this section, we introduce the models of learnability. The definitions and
notations in this section are due to Cohen [5-7].

Let C be a conjunctive query and B be a database. A ground atom e is a
fact of C if the predicate symbol of e is same as one of hd(C). In this paper,
assume that there exists no element of B of which predicate symbol is same as
hd(C).

For a conjunctive query C and a database B, the following set is called a
simple instance of (C, B):

{e|{C}UBFe,eis afact of C}.

For an element e of a simple instance of (C, B), we say that e is covered by
(C,B).
Furthermore, we introduce a description D, which is a finite set of ground

unit clauses. Then, the following set of pairs is called an extended instance of
(C,B):

{(e,D) | {C}UDUB¥ke,eis a fact of C}.

For an element (e, D) of an extended instance of (C, B), we say that (e, D) is
covered by (C, B).

In his learnability results, Cohen has adopted both the simple instance [7]
and the extended instance [5, 6]. If the extended instance is allowed, then many
programs that are usually written with function symbols can be rewritten as

2 Gottlob et al. [16] have called the problem ACQ “Acyclic Conjunctive Query Output
Tuple (ACQOT)”.

On the Hardness of Learning Acyclic Conjunctive Queries 243

function-free programs. There is also a close relationship between extended in-
stances and “flattening” [10, 17, 24, 31]; Some experimental learning systems such
as FOIL [28] also impose a similar restriction. See the papers [5, 6] for more detail.

In the following, we introduce some definitions and notions of learning theory.

Let X be a set, called a domain. Define a concept ¢ over X to be a represen-
tation of some subset of X, and a language L to be a set of concepts. Associated
with X and L are two size complezity measures. We will write the size complex-
ity of some concept ¢ € L or instance e € X as |c| or |e], and we will assume that
this complexity measure is polynomially related to the number of bits needed to
represent ¢ or e. We use the notation X,, (resp., L,) to stand for the set of all
elements of X (resp., L) of size complexity no greater than n.

An ezample of ¢ is a pair (e,b), where b = 1 if e € ¢ and b = 0 otherwise. If
D is a probability distribution function, a sample of ¢ from X drawn according
to D is a pair of multisets S*, S~ drawn from the domain X according to D,
STt containing only positive examples of ¢, and S~ containing only negative
examples of c.

Definition 3. A language L is polynomially predictable if there exists an al-
gorithm PACPREDICT and a polynomial function m(1/e,1/d, n.,n:) so that for
every ny > 0, every n, > 0, every ¢ € L,,, every ¢ (0 < & < 1), every ¢
(0 < 6 <1), and every probability distribution function D, PACPREDICT has
the following behavior:

1. given a sample ST, S~ of ¢ from X,,, drawn according to D and containing
at least m(1/e, 1/, ne,nt) examples, PACPREDICT outputs a hypothesis h
such that

prob(D(h —¢) + D(c — h) > €) < 4,

where the probability is taken over the possible samples ST and S—.

2. PACPREDICT runs in time polynomial in 1/e, 1/0, n., n, and the number
of examples.

3. h can be evaluated in polynomial time.

The algorithm PACPREDICT is called a prediction algorithm for L and the func-
tion m(1/e,1/d, ne,n) is called the sample complexity of PACPREDICT.

Definition 4. A language L is pac-learnable if there exists an algorithm PA-
CLEARN so that

1. PACLEARN satisfies all the requirements in Definition 3, and
2. on inputs ST and S~, PACLEARN always outputs a hypothesis h € L.

If L is pac-learnable, then L is polynomially predictable, but the converse does
not hold in general; If L is not polynomially predictable, then L is not pac-
learnable.

In this paper, a language L is regarded as some set of conjunctive queries.
Furthermore, for a database B, L[B] denotes the set of pairs of the form (C, B)

244 Kouichi Hirata

such that C' € L. Semantically, such a pair will denote either a simple or an
extended instance.

For some set B of databases, L[B] denotes the set {L[B] | B € B}. Such a set
of languages is called a language family. In particular, the set of j-databases is
denoted by j-B, and the set of databases consisting of at most [atoms by B;.

Definition 5. A language family L[B] is polynomially predictable if for every
B € B there exists a prediction algorithm PACPREDICTp for L[B]. The pac-
learnability of a language family is defined similarly.

We will deal with the language ACQ as the set of all acyclic conjunctive queries.

Schapire [32] has shown that, if the evaluation problem is NP-hard, then
the learning problem is not pac-learnable unless NPCP /Poly. Since the problem
ACAQ is corresponding to an evaluation problem for ACQ[B] and it is LOGCFL-
complete, we cannot apply Schapire’s result to our learning problem ACQ][B].

Pitt and Warmuth [27] have introduced a notion of reducibility between
prediction problems. Prediction-preserving reducibility is essentially a method of
showing that one language is no harder to predict than another.

Definition 6 (Pitt & Warmuth [27]). Let L; be a language over domain
X; (i = 1,2). We say that predicting L1 reduces to predicting Lo, denoted by
L; Q Lo, if there exists a function f : X3 — X3 (called an instance mapping)
and a function g : L1 — Lo (called a concept mapping) satisfying the following
conditions:

1. z € ciff f(z) € g(c);
2. the size complexity of g is polynomial in the size complexity of c;
3. f(z) can be computed in polynomial time.

Theorem 2 (Pitt & Warmuth [27]). Suppose that L1 < Ls.

1. If Lo is polynomially predictable, then so is L.
2. If Ly is not polynomially predictable, then neither is Lo.

For some polynomial p, let BFfL(") be the class of Boolean formulae over n
variables of size at most p(n), and let BFP("™) = Ups1 BF2(™) Then:

Theorem 3 (Kearns & Valiant [19]). BFP™) is not polynomially predictable
under the cryptographic assumptions that inverting the RSA encryption func-
tion, recognizing quadratic residues and factoring Blum integers are solvable in
polynomial time.

4 The Hardness of Predicting Acyclic Conjunctive
Queries

In this section, we discuss the hardness of predicting acyclic conjunctive queries.
Note that the following proofs are motivated by Cohen (Theorem 5 in [6] and
Theorem 9 in [7]).

On the Hardness of Learning Acyclic Conjunctive Queries 245

If we can receive an example as a ground clause, Kietz [20,21] implicitly
has shown that acyclic conjunctive queries consisting of literals with at most
j-ary predicate symbols (j > 2) are not pac-learnable unless RP = PSPACE,
without databases as background knowledge. Under the same setting, Cohen [8]
has strengthened this result that they are not polynomially predictable under
the cryptographic assumptions.

On the other hand, by using Cohen’s result (Theorem 3 in [6]), we can claim
that, for each j > 3, the recursive version of ACQ[j-B] is not polynomially
predictable from an extended instance under the cryptographic assumptions. In
contrast, we obtain the following theorem.

Theorem 4. For eachn > 0, there exists a database B € 3-B such that BFfL(") <
ACQ[B] from an extended instance.

Proof. Let e = e1...e, € {0,1}" be a truth assignment and F € BFE™ be a
Boolean formula of size polynomial p(n) over Boolean variables {z1,...,z,}.
First, construct the following database B € 3-B:

_ {and(0,0,0), and(0,1,0), or(0,0,0), o

(0,1,1), not(0,1)
and(1,0,0), and(1,1,1), or(1,0,1), o ’

r
r(1,1,1), not(1,0)

By the definition of an extended instance, an instance mapping f must map
e to a fact and a description. Then, construct the following instance mapping f:

f(e) = (p(l), {bitl(el)’) bZtn(en)})

Note that F is represented as a tree of size polynomial p(n) such that each
internal node is labeled by A, V or =, and each leaf is labeled by a Boolean
variable in {z1,...,z,}. Each internal node n; of F' (1 < i < p(n)) has one (n;
is labeled by —) or two (n; is labeled by A or V) input variables and one output
variable y;. Let L; be the following literals:

and(z;1, zi2,y;) if n; is labeled by A,
L; =< or(zi1, zi2,yi) if m; is labeled by V,
not(zi1, Yi) if n; is labeled by —.

Here, z;; and z;5 denote input variables of n;. Construct the following concept
mapping g:
g(F) =p(y) « (/\1§j§n bitj(z5)), (/\1§¢gp(n) L),

where y is a variable in (A ;<) Li) corresponding to an output of F.

Since F is represented as a tree, g(F) is an acyclic conjunctive query. Fur-
thermore, it holds that e satisfies F iff f(e) is covered by (g(F),B). In other
words, e satisfies F iff

{g(F)} U {bitl(el)v SRR bZtn(en)} UBFE p(].)
Hence, the statement holds. O

By incorporating Theorem 4 with Theorem 3, we obtain the following theorem:

246 Kouichi Hirata

Theorem 5. For each j > 3, ACQ[j-B] is not polynomially predictable from an
extended instance under the cryptographic assumptions.

Hence, we can conclude that not only the recursive version but also the non-
recursive version of ACQIj-B] (j > 3) is not polynomially predictable from an
extended instance under the cryptographic assumptions.

On the other hand, consider the predictability of ACQ[B] from a simple
instance.

Theorem 6. For eachn > 0, there exists a database B € p(n)-B of size O(2P(™))
such that BFP(™ < ACQ[B] from a simple instance.

Proof. Let e and F' be the same as Theorem 4. Also let B be the same as
Theorem 4. Then, construct the following database B’:

B’ = BU{ext(0,...,0),...,ext(l,...,1)}.
Here, ext is a new p(n)-ary predicate symbol. Note that the size of B’ is O(2P(™).

By using the same literals L; (1 < ¢ < p(n)) as Theorem 4, construct an
instance mapping f and a concept mapping g as follows:

fle) =pler,...,en,1), B

9(F) =p(@1, 20, y) — (Nicicpm) Li)s ext (V).
Here, Y denotes the tuple of all p(n) variables occurring in Algigp(n) L; and y
is a variable in (/\;<;<,(,) Li) corresponding to an output of F.

The GYO-reduct of the associated hypergraph H(g(F)) of g(F) first re-
moves all hyperedges except the hyperedge labeled by ext from H(g(F)), so
GYO(H(g(F)) = (0,0) (see Fig. 2). Then, g(F') is an acyclic conjunctive query.
Furthermore, it is obvious that e satisfies F' iff {g(F)} U B’ - f(e). Hence, the
statement holds. O

Hence, we can conclude that, if we can ignore the size of a database, then ACQ[B]
is not polynomially predictable from a simple instance under the cryptographic
assumptions.

Let B be a database and f be an instance mapping in the proof of Theorem 6.
Consider the following concept mapping ¢’ similar as g:

g'(F)=per, - 70.9) = Niciyin Li

Then, it holds that e satisfies F iff {¢'(F)} U B f(e).
Furthermore, consider the following instance mapping f”, concept mapping
g"" and database B":

f'(e) =pler, ... en),
9" (F) = p(x1, - 2n) = (Ni<icpm) Li)s true(y),
B" = BU {true(1)}.
Here, y is a variable in (/\1§z§p(n) L;) corresponding to an output of F'. Then,
it also holds that e satisfies F' iff {¢”(F)} U B" F f"(e).
However, both ¢'(F) and ¢"(F) are cyclic as Fig. 2. In order to avoid to

the cyclicity, we need to introduce a new p(n)-ary predicate symbol ezt and a
database B’ of size O(2P(™)) in the proof of Theorem 6.

On the Hardness of Learning Acyclic Conjunctive Queries 247

Fig. 2. The associated hypergraphs to g(F), ¢’'(F) and ¢"(F), where F = (z1 A z2) V
—z3. Note that g(F) is acyclic but ¢’ (F) and g”(F) are cyclic.

5 Simple Learnable Subclasses of Acyclic Conjunctive
Queries

Since the assumption of Theorem 6 is too strong, in this section, we discuss
the learnable subclass of ACQ[j-B] from a simple instance. First, the following
theorem holds:

Theorem 7. ACQ[1-DB] is pac-learnable from a simple instance.

Proof. We can assume that a target conjunctive query has no variables that
occur in the body but not in the head. Let n be an arity of a target predicate
p, and m be the number of distinct predicate symbols in B € 1-DB, where m
predicate symbols are denoted by q1, ..., gm,. We set an initial hypothesis C' as:

C=plx1,...,2n) — /\19‘§n /\1§j§m Qj(wi)-

Then, by applying Valiant’s technique of learning monomials [33] to C, the
statement holds. O

Consider the case that j = 2. In the following, we discuss the learnability of
ACQI2-B;], where B; denotes the set of databases consisting of at most ! atoms.

We prepare some notions of k-local conjunctive queries according to [7,9].
A variable x is adjacent to a variable y if they appear in the same literal of
the conjunctive query, and connected to y if either x is adjacent to y or there
exists a variable z such that x is adjacent to z and z is connected to y. The
locale of a variable z is the set of literals that contain either x or some variable
connected to x. The locality of a variable is the cardinality of the largest locale
of it. The locality of a conjunctive query is the cardinality of the largest locale
of any variable in it. A conjunctive query is k-local if the locality of it is at most
k, and we denote the set of all k-local conjunctive queries by k-LOCAL.

Theorem 8 (Cohen [7], Cohen & Page [9]). For any fixred k > 0 and j > 0,
k-LocAL[j-B] is pac-learnable from a simple instance.

248 Kouichi Hirata

For B € 2-B, let Gp denote the labeled directed multigraph (Vz, Ep) such
that Vg is a set of constant symbols in B and Ep is a set of pairs (a,b) labeled
by ¢ if there exists an atom ¢(a,b) € B. Furthermore, we denote the length of
longest path in Gp in which each edge occurs at most once by len(Gp).

Lemma 1. Let B € 2-B and suppose that the predicate symbol p does not occur
in B. Also let C be the following acyclic conjunctive query:

C=p(x) —q(r,y1),02W1,92); - @m(Ym-1,Ym),

where ¢; occurs in B and y; # yr (j # k). For a ground atom p(a), if {C}UB F
p(a) and m > len(Gp), then there exists an acyclic conjunctive query C”:

Cl = p(x) — rl(x7y1)7r2(y17 y2)7 R 77"m’(ym’—17 ym’);
such that r; occurs in B, y; #yx (§ # k), {C'}UBF p(a), and m’ < len(Gp).

Proof. By removing the literals corresponding to the cycle in G accessible from
a in C, and by applying an adequate renaming substitution, we can obtain the
above C”. Such a cycle does exist because m > len(Gp). m]

Theorem 9. For a fized I > 0, ACQ[2-B;] is pac-learnable from a simple in-
stance.

Proof. For each B € By, let m; and my be the number of atoms in B with unary
and binary predicate symbols, respectively. Note that my + moe = [. Let C €
ACQ[B] be a target acyclic conjunctive query with the head p(z1,...,x,).

Since C' is acyclic, there exist no two literals ¢(y1,y2) and 7(z1, 22) in bd(C')
such that both ¢ and r occur in B, y; and y, are connected to z; (1 < i < r),
z1 and zo are connected to z; (1 < j <), x; # x;, and one of y1 = z1, y1 = 22,
Yo = 21 or Yo = z9 holds. Then, for each variable x;, any locale of x; consisting
of atoms with binary predicate symbols whose arguments’ variables are distinct
is regarded as a tree such that the root is labeled by z;.

For each x;, consider a complete mo-ary tree T; such that the root is labeled
by x;, each node is labeled by a mutually distinct new variable, each edge is
labeled by possible binary predicate symbol in B (at most ms2), and the depth
is at most len(Gp) (by Lemma 1). Then, each locale of x; is corresponding
to a subtree of T; rooted by x;. Since len(Gp) < ma, each locale contains at

most my'? ((m1 + m2)m;"2) < I'+1 atoms. Here, the first and the second mg*

represent the maximum number of atoms with binary predicate symbols and one
of nodes in a subtree of T" associated with a locale. Also m1 and mso in m1 + meo
represent the maximum number of atoms with unary predicate symbols and one
of atoms with binary predicate symbols such that the first argument’s variable
is equal to the second one, respectively. Note here that the number of all locales
of x;, which is the total number of subtrees of T; rooted by x;, is independent
from n.

The above discussion holds for each x; (1 < i < n). Hence, the target acyclic
conjunctive query is lllH—local, by considering all locales constructed from T;
for each z;. Since the number of all locales is bounded by polynomial on n, the
statement holds by Theorem 8. O

On the Hardness of Learning Acyclic Conjunctive Queries 249

Theorem 9 is a similar result as pac-learnability of arbitrary conjunctive queries
with a forest introduced by Horvath and Turdn [18]. In Theorem 9, a target
conjunctive query is restricted to be acyclic but a database is given as an arbi-
trary 2-database. In contrast, in [18], a database is restricted to be a forest but
a target conjunctive query is arbitrary.

6 Learnability and Subsumption-Efficiency

We say that a clause C' subsumes another clause D if there exists a substitu-
tion 6 such that C6 C D. The subsumption problem for a language L is the
problem of whether or not C subsumes D for each C,D € L. As the corollary
of the LOGCFL-completeness of ACQ, Gottlob et al. [16] have discussed the
subsumption problem for ACQ.

In general, the subsumption problem for nonrecursive function-free definite
clauses is NP-complete [3,15]. As the tractable cases for the subsumption prob-
lem, it is known the following theorem. Here, --DEPTHDETERM denotes the set
of all determinate clauses of which the variable depth is at most ¢ [11].

Theorem 10 (Kietz & Liibbe [22]; Gottlob et al. [16]). The subsump-
tion problems for i-DEPTHDETERM and k-LOCAL (i,j,k > 0) are solvable in
polynomial time [22]. Also the subsumption problem for ACQ is LOGCFL-
complete [16].

It is also known that both -DEPTHDETERM[j-B] [11] and k-LocaL[j-B] [7,
9] (i,7,k > 0) are pac-learnable from a simple instance, so from an extended
instance with an empty description. On the other hand, ACQ[j-5] (j > 3) is not
polynomially predictable from an extended instance under the cryptographic
assumptions by Theorem 5. Hence, the language ACQ is a typical example that
collapses the equivalence between pac-learnability from an extended instance
and subsumption-efficiency.

7 Conclusion

In this paper, we have discussed the learnability for acyclic conjunctive queries.
First, we have shown that, for each j > 3, ACQ[j-B] is not polynomially pre-
dictable from an extended instance under the cryptographic assumptions. Also
we have shown that, for each n > 0 and a polynomial p, there exists a database
B € p(n)-B of size O(2P() such that BFE™ < ACQ[B] from a simple instance.
This implies that, if we can ignore the size of a database, then ACQ[B] is not
polynomially predictable from a simple instance under the cryptographic as-
sumptions. Finally, we have shown that ACQ[1-B] and ACQ[2-B;] (I > 0) are
pac-learnable from a simple instance. It remains open whether ACQ[j-B] (j > 2)
and ACQ[j-Bi] (> 3,1 > 0) are pac-learnable or not polynomially predictable
from a simple instance.

250 Kouichi Hirata

In Section 6, we have claimed that the language ACQ collapses the equiv-
alence between pac-learnability from an extended instance and subsumption-
efficiency. It also remains open whether or not pac-learnability from a simple
instance and subsumption-efficiency are equivalent to any language.

Various researches have investigated the learnability by using equivalence
and membership queries such as [1,23,24, 30,29]. Note that our result in this
paper implies that ACQ[j-B] (j > 3) is not learnable using equivalence queries
alone. It is a future work to analyze the learnability of ACQIj-B] (j > 3) by
using membership and equivalence queries, and by extending to one containing
function symbols or recursion. It is also a future work to analyze the relationship
between our acyclicity and the acyclicity introduced by [1,29].

Fagin [14] has given the degree of acyclicity; a-acyclic, S-acyclic, y-acyclic
and Berge-acyclic. In particular, he has shown the following chain of implication
for any hypergraph H: H is Berge-acyclic = H is y-acyclic = H is (-acyclic =
H is a~acyclic (none of the reverse implication holds in general). Acyclicity in
the literature such as [2,4, 13,16, 34] and also in this paper is corresponding to
Fagin’s a-acyclicity [14]. Note that none of the results in this paper implies the
predictability of the other degrees of acyclicity. It is a future work to investigate
the relationship between the degree of acyclicity and the learnability.

Acknowledgment

The author would like to thank Hiroki Arimura in Kyushu University for a
motivation of this paper and insightful comments. He also would like to thank
Akihiro Yamamoto in Hokkaido University and Shinichi Shimozono in Kyushu
Institute of Technology for constructive discussion. Finally, he would like to
thank anonymous referees of ALT2000 for valuable comments.

References

1. Arimura, H.: Learning acyclic first-order Horn sentences from entailment,
Proc. 8th ALT, LNAI 1316, 432-445, 1997.

2. Beeri, C., Fagin, R., Maier, D. and Yannakakis, M.: On the desirability of acyclic
database schemes, Journal of the ACM 30, 479-513, 1983.

3. Baxter, L. D.: The complezity of unification, Doctoral Thesis, Department of Com-
puter Science, University of Waterloo, 1977.

4. Chekuri, C. and Rajaraman, A.: Conjunctive query containment revisited, Theo-
retical Computer Science 239, 211-229, 2000.

5. Cohen, W. W.: Pac-learning recursive logic programs: Efficient algorithms, Journal
of Artificial Intelligence Research 2, 501-539, 1995.

6. Cohen, W. W.: Pac-learning recursive logic programs: Negative results, Journal of
Artificial Intelligence Research 2, 541-573, 1995.

7. Cohen, W. W.: Pac-learning non-recursive Prolog clauses, Artificial Intelli-
gence 79, 1-38, 1995.

8. Cohen, W. W.: The dual DFA learning problem: Hardness results for programming
by demonstration and learning first-order representations, Proc. 9th COLT, 29-40,
1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.
33.

34.

On the Hardness of Learning Acyclic Conjunctive Queries 251

Cohen, W. W. and Page Jr., C. D.: Polynomial learnability and inductive logic
programming: Methods and results, New Generation Computing 13, 369-409, 1995.
De Raedt, L. and Dzeroski, S.: First-order jk-clausal theories are PAC-learnable,
Artificial Intelligence 70, 375-392, 1994.

Dzeroski, S., Muggleton, S. and Russell, S.: PAC-learnability of determinate logic
programs, Proc. 5th COLT, 128-135, 1992.

Dzeroski, S., Muggleton, S. and Russell, S.: Learnability of constrained logic pro-
grams, Proc. 6th ECML, LNAI 667, 342-347, 1993.

Eiter, T. and Gottlob, G.: Identifying the minimal transversals of a hypergraph
and related problems, STAM Journal of Computing 24, 1278-1304, 1995.

Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes,
Journal of the ACM 30, 514-550, 1983.

Garey, M. R. and Johnson, D. S.: Computers and intractability: A guide to the
theory of NP-completeness, W. H. Freeman and Company, 1979.

Gottlob, G., Leone, N. and Scarcello, F.: The complexity of acyclic conjunctive
queries, Proc. 39th FOCS, 706-715, 1998.

Hirata, K.: Flattening and implication, Proc. 10th ALT, LNAI 1720, 157-168,
1999.

Horvéath, T. and Turdn, G.: Learning logic programs with structured background
knowledge, in De Raedt, L. (ed.): Advances in inductive logic programming, 172—
191, 1996.

Kearns, M. and Valiant, L.: Cryptographic limitations on learning Boolean formulae
and finite automata, Journal of the ACM 41, 67-95, 1994.

Kietz, J.-U.: Some lower bounds for the computational complexity of inductive logic
programming, Proc. 6th ECML, LNAI 667, 115-123, 1993.

Kietz, J.-U. and Dzeroski, S.: Inductive logic programming and learnability,
SIGART Bulletin 5, 22-32, 1994.

Kietz, J.- U. and Liibbe, M: An efficient subsumption algorithm for inductive logic
programming, Proc. 11th ICML, 130-138, 1994.

Khardon, R.: Learning function-free Horn expressions, Proc. 11th COLT, 154-165,
1998.

Khardon, R.: Learning range-restricted Horn expressions, Proc. EuroCOLT99,
LNATI 1572, 111-125, 1999.

Muggleton, S. (ed.): Inductive logic programming, Academic Press, 1992.

Page Jr., C. D. and Frisch, A. M: Generalization and learnability: A study of
constrained atoms, in [25], 129-161.

Pitt, L. and Warmuth, M. K.: Prediction preserving reduction, Journal of Com-
puter System and Science 41, 430-467, 1990.

Quinlan, J. R.: Learning logical definitions from relations, Machine Learning 5,
239-266, 1990.

Reddy, C. and Tadepalli, P.: Learning first-order acyclic Horn programs from
entailment, Proc. 8th ILP, LNAI 1446, 23-37, 1998.

Reddy, C. and Tadepalli, P.: Learning Horn definitions: Theory and application to
planning, New Generation Computing 17, 77-98, 1999.

Rouveirol, C.: Extensions of inversion of resolution applied to theory completion,
in [25], 63-92.

Schapire, E.: The strength of weak learning, Machine Learning 5, 197-227, 1990.

Valiant, L.: A theory of learnable, Communications of the ACM 27, 1134-1142,
1984.

Yannakakis, M.: Algorithms for acyclic database schemes, Proc. 7th VLDB, 82-94,
1981.

Dynamic Hand Gesture Recognition Based On
Randomized Self-Organizing Map Algorithm

Tarek El.Tobely!, Yuichiro Yoshiki?, Ryuichi Tsuda?, Naoyuki Tsuruta?, and
Makoto Amamiy!

! Department of Intelligent Systems, Graduate School of Information Science and
Electrical Engineering, Kyushu University, Fukuoka, Japan.
6-1, Kasuga-Koen, Kasuga, Fukuoka 816, Japan
(tobely, amamiya)@al.is.kyushu-u.ac.jp
2 Department of Electronic Engineering, Graduate School of Electronics Engineering,
Fukuoka University, Fukuoka, Japan. 8-19-1, Nanakuma, Jonan, Fukuoka, 814-0180,
Japan (yoshiki , rtsuda, tsuruta)@ndmail.tl.fukuoka-u.ac.j

Abstract. Gesture recognition is an appealing tool for natural interface
with computers especially for physically impaired persons. In this paper,
it is proposed to use Self-Organized Map (SOM) to recognize the pos-
ture images of hand gestures. Since the competition algorithm of SOM
allows alleviating many difficulties associated with gesture recognition.
However, it is required to reduce the recognition time of one image in
SOM network to the range of normal video camera rates, this permits the
network to accept dynamic input images and to perform on-line recogni-
tion for hand gestures. To achieve this, the Randomized Self-Organizing
Map algorithm (RSOM) is proposed as a new recognition algorithm for
SOM. With RSOM algorithm, the recognition time of one image reduced
to 12.4 % of the normal SOM competition algorithm with 100 % accu-
racy and allowed the network to recognize images within the range of
normal video rates. The experimental results to recognize six dynamic
hand gestures using RSOM algorithm is presented.

1 Introduction

The goal of gesture understanding research is to redefine the way people in-
teract with computers. By providing computers with the ability to understand
gestures, speech, and facial expressions, it is possible to bring human-computer
interaction closer to human-human interaction. However, the research in gesture
recognition can be divided into image-based systems and instrument glove-based
systems. The image based gesture recognition systems is considered as passive
input systems that usually employ one or more cameras to capture human mo-
tions. While in the glove-based systems, the user requires to wear glove-like
instrument, which is equipped with sensors on the back of finger joints to detect
the finger flex and extension [1]. In this work, image-based gesture recognition
system is used to recognize different hand gestures using SOM network. Where,
each gesture is treated as a set of consequence postures. These postures are used

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 252-263, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

Dynamic Hand Gesture Recognition 253

in constructing the features map of SOM network. Indeed, the competition algo-
rithm of SOM network can easily be modified to alleviate some critical problems
in gesture recognition systems such as gesture start-end points, temporal and
spatial variances, and postures ambiguity. In image-based gesture recognition
systems, visual methods using some images features are divided into two major
techniques: the first uses the projected position, and the second uses the mo-
tion information [2]. Some other methods [3] can estimate human gestures from
silhouettes using the idea of synthesis without extracting the features. With
SOM, the recognition process can use a technique similar to silhouette recogni-
tion. However, the competition algorithm of SOM allows recognizing the images
without modifying its gray levels. So, the input image will be applied to the net-
work as it is, and the features map neuron that has maximum similarity between
its codebook and this input will be selected as the winner neuron.

In SOM competition, the winner computation depends on the numbers of
input neurons and feature map neurons. So, if the dimensionality n of input
space is high and the number of feature map neurons m is large, the required
computations to answer the winner category is very large, in the order of nm.
Because of that, SOM is not easily affordable to most dynamic image recognition
applications where the input images are taken from video camera. In this paper,
it is proposed to apply new recognition algorithm to SOM network. The algo-
rithm is called Randomized Self-Organizing Map (RSOM). In RSOM algorithm,
the winner competition is applied in two phases, the first uses random subset of
input image to select a primary winner, and the second search for the winner
in the set of neurons neighbor to the primary winner. RSOM algorithm applied
to recognize six-hand gestures of Jan-Ken-Pon game. The results showed that
with RSOM algorithm, the recognition time of one image reduced to the range
of normal video rate, and the network could recognize dynamic gesture images.

In the next section, our proposal to use SOM in gesture recognition is pre-
sented. Then, in sections 3 and 4, the RSOM competition algorithm and its
statistical analysis are explained. In section 5, the application of RSOM algo-
rithm to recognize dynamic hand gestures is presented. Finally, the conclusion
and discussion are given in section 6.

2 SOM Gesture Recognition System

Self-Organizing neural networks are biologically motivated by the ability of the
brain to map outside world into the cortex, where nearby stimuli are coded on
nearby cortical areas. Kohonen (1982) has proposed a simple algorithm for the
formation of such mapping. A sequence of inputs is presented to the network
for which synaptic weights are then updated to eventually reproduce the input
probability distribution as closely as possible [4]. SOM competition in Euclidean
space runs as follow: Apply the input to the network. Then, measure the Eu-
clidean distance between the input pattern and the codebooks of all features
map neurons. Finally, the neuron with minimum distance is considered as the
winner. During SOM learning scheme, the network can visualize or project high

254 Tarek El.Tobely et al.

dimensional input space into two-dimensional feature map while preserving the
topological relations. Moreover, the point density function of the feature map
codebook approximates some monotonic function of the probability density func-
tion of the input learning data. Introducing SOM network to gesture recognition
applications requires faster recognition algorithm so that it can accept dynamic
gesture and implement on-line gesture recognition. Also, it is proposed to decom-
pose each gesture into a sequence of postures. The postures can be recognized
using SOM competition algorithm. After that, a pattern matching for each se-
quence of postures can be used to designate the meaning of the gesture given by
the input images.

L) e o
Input Image Sequence Gesture Pattern Matching

Fig. 1. SOM gesture recognition system, discrete posture recognition by SOM network,
then gesture definition by pattern matching algorithm.

Figure 1 shows a complete SOM gesture system divided into two stages.
The first convert the input images sequence into discrete posture states, and
the second apply pattern matching algorithm for each set of discrete posture
sequence to give the gesture meaning of the input image. The first stage can be
implemented using SOM network, where the network is constructed to recognize
the discrete postures of all gestures.

In general, any gesture recognition system has many critical problems such as
gesture start-end points, temporal and spatial variance, and gesture ambiguity.
The next subsections present how SOM gesture recognition system can overcome
these difficulties.

2.1 Gesture Start-End Points

Start-end point problem is very important for continuos gestures recognition. It
is required to discriminate between the gesture postures and the transition from

Dynamic Hand Gesture Recognition 255

the end point of one gesture to the start point of the next. Since, SOM select
winner for any input images even if this image does not belong to any gesture.
For that, the concept of competition threshold is proposed. Where, the input
image is considered as posture if its competition distance is less than certain
threshold value. This can filter out the transition images from gesture images.

2.2 Temporal and Spatial Variance

Temporal variance and spatial variance are two important factors in any gesture
recognition system. Temporal variance is due to the varying period to perform
the gesture. However, SOM gesture recognition system is insensitive to the speed
of the gestures. Since the network accepts discrete input images and converts to
discrete postures sequence. Therefore, if the same gesture is given to the network
in fast or slow speed, SOM network will convert it into the same discrete posture
sequence. Gesture spatial variance means the different scales or size of shape in
the gestures. To avoid this problem, it is recommended to construct the network
feature map using different variety for each posture. In this case, the network
can tolerate the spatial variance between different users.

2.3 Posture Ambiguity

Some postures used in the system may be quite similar to another postures.
To overcome this problem, it is recommended to associate prediction technique
to the recognition process. The prediction process is controlled using different
conditional probability equations as used in natural language processing systems
[5] or speech recognition systems [6]. In this case, the network can give a sequence
of three winners for each image, and the prediction system can select the neuron
with maximum probability as the winner.

3 RSOM Competition

The winner searching in SOM networks depends on measuring the similarity
between the input and the codebook of all features map neurons. Then, the
neuron with maximum similarity is selected as the winner. Different competi-
tion scheme can be used to measure this similarity such as correlation, direction
cosine, or Fuclidean distance. However, the winner searching computation in-
creases as the network size increases. This is the main motivation to modify the
normal recognition algorithm of SOM network, the new proposed algorithm is
called Randomized Self-Organizing Map (RSOM) algorithm. In this algorithm,
the winner competition is less depending on the network size and spends shorter
time in winner searching. However, RSOM is applied for winner searching on
SOM networks that constructed using its normal competition algorithm.
During SOM learning scheme, similar inputs are mapped in a contiguous
location on the network feature map. Therefore, it is possible to divide the
feature map into subsets of contiguous clusters. Where the neighbor neurons

256 Tarek El.Tobely et al.

with similar codebook are belong to the same cluster, this in fact the main
foundation of RSOM algorithm.

Before implementing RSOM algorithm, it is required to apply the following
off-line computations:

— Divide the network feature map into continuous subsets of clusters.
— From each cluster, select one neuron, usually in its center, as the cluster
representative.

In gesture recognition applications, the division of feature map into different
clusters can be applied manually. Since, in such applications, the codebook of
SOM feature map is coded into the image it represents. Therefore, it is possible
to define the set of neurons in each cluster by viewing the codebook of the
feature map neurons as image. However, the automatic division of feature map
into clusters is also possible by using algorithm similar to the LVQ algorithm
[7].

The on-line competitions of RSOM are done in two phases: The first phase
uses subset of the input image to estimate the position of the winner on the
feature map; the winner in this phase is called the winner candidates, and its
competition runs as follow:

— Select simple random sample S from the input image with size k and apply
to the network.

— With any competition scheme, apply the competition between the pixels
in S and the corresponding codebooks of each cluster representative in the
network

— The cluster of the winner selected from this competition is considered as the
cluster candidates.

— With the same competition scheme, apply the competition between the pixels
in S and the corresponding codebooks of all neurons in the cluster candidate.

— The winner selected from this competition is called the winner candidates.

In the second phase, the entire input image pixels are used to search for
the winner in the set of feature map neurons neighbor to the winner candidate.
The winner selected from this phase is considered as the final SOM winner. The
competition in this phase runs as follow:

— Input all the image pixels to the network.

— With the same competition scheme used in the first phase, apply the com-
petition between the set of feature map neurons neighbor to the winner
candidate.

— If the competition threshold condition is satisfied, consider the selected win-
ner as the final SOM winner. Otherwise, neglect this winner and consider
the input image as gesture transition image.

As will be explained in the next section, the size of the random subset S
depends on the standard deviation and pixels distribution of the input image. In
addition, the width of the winner candidate’s neighbor neurons depends mainly
on the sample size k.

Dynamic Hand Gesture Recognition 257

4 Competition Parameters

The competition in RSOM algorithm depends on three main parameters, the
Pixel Usage Ratio (PUR), the Neighborhood Range (NR), and the Competition
Threshold (CT). The PUR represents the ratio between the randomly selected
pixels to the total image pixels. Those selected pixels are used in the first phase
of RSOM to find the winner candidate. While, the NR defines the size of the
winner candidate neighborhood function. During the second phase competition
of RSOM, the final winner is selected from this NR set. The winner selected from
this phase is considered as gestures posture if the competition value satisfies
the CT value, otherwise the winner will be neglected, and the input image is
considered as gesture transition image.

In the first competition phase of RSOM, the similarity between the input
image and the codebook of feature map neurons is measured using Euclidean
distance for the subset of input image.

Dj: Z (:u’ij_Xi)27 j:]-a"';m (1)
i=1,i€S

Where, D; represents the distance between the input image and the codebook
of neuron j, S is the randomly selected subset of image pixels, p;; is the weight
between the input neuron ¢ and the output neuron j, n is the number of input
pixels, m is the number of feature map neurons, and X; is the gray level value of
pixel 7 in the input image. The winner candidate W' is selected as the neuron
with minimum FEuclidean distance.

m
The question of how large the sample is required to select arises now. To select a
larger sample than the requirements to achieve the desired results is wasteful of
the recognition time. In our case, the number of pixels in the input image (the
population) is statistically large, and the number of pixels in the subset S (the
sample size) is calculated as the sample that could estimate the mean of the input
image pixels. This will give the most accurate proportional calculation of D s
in equation 1 compared to its values with the normal SOM competition. The
calculation of the sample size deends on the standard deviation of the image
pixels, the required sample confidence coefficient, and the sample estimation
interval [8].

o

V=27x NG (3)
Where, V' represents the required estimation interval of the selected sample, Z
is the normal distribution curve area for the required confidence coefficient, o
is the standard deviation of the population, and k is the required sample size.
When equation 3 solved for k, it gives:

k=22 (4)

258 Tarek El.Tobely et al.

If sampling without replacement from a finite population (n) is required, equa-

tion 3 becomes:
o n—=k
=X ——y =
1% X VA S (5)

Which, when solved for k, gives:
2 2
b nzZ<o (6)
V2(n—1)+ Z%02

So, the PUR can be calculated as:

PUR=" (7)
n

For normal distribution population, the best choice for the estimation inter-
val and the confidence coefficient are 5 and 0.95, respectively. Indexing this value
of confidence coefficient on the table of normal curve areas yields z = 1.96. The
above equations are also valid if the sample is selected from non-normal popula-
tion. Since the central limit theory states that for large samples, the distribution
of its mean is approximately normally distributed regardless of how the parent
population is distributed [9]. In this case, it is recommended to decrease the
estimation interval to 2, this will increase the sample size for the same standard
deviation and confidence coefficient.

By SOM learning scheme, the locality of feature map neurons for the compe-
tition winner of each input pixel in the same image is preserved, since SOM maps
similar inputs in a contiguous location on the network feature map. Therefor,
the competition between any input pixel and the set of weights connected to
that input would give the minimum difference in a small linear range near to the
competition winner, as shown in figure 2. It is clear that, for different pixels of
the input image, the location of best match neurons falls in a very narrow range
around the winner.

Of course, there is no clear cut to consider the winner candidate selected
from the first phase competition of RSOM algorithm as the normal SOM winner.
However, as SOM keeps the locality of feature map neurons for the competition
winner with different input pixel. In addition, the probability density functions
(pdf) of the selected sample S is similar to the pdf of the sample population, and
with SOM learning scheme the point density function of the feature map code-
book approximates some monotonic function of the probability density function
of the input learning images. Therefore, applying the competition using subset
of input image will select the winner candidate in a very near position on the
network feature map to SOM winner. Furthermore, as the number of elements
in the randomly selected subset S increases, the winner candidate falls closer to
SOM winner. The essence here is that, by using subset of image pixels instead
of the entire pixels it is possible to reach a set of feature map neurons in which
SOM winner lies. The task of the second phase competition is to reach SOM
winner. Simply, in this phase, a set of neighborhood neurons around the win-
ner candidates is defined. Then the competition between these neurons will be
applied using the entire image pixels.

Dynamic Hand Gesture Recognition 259

-w\l I

RN 4
F “-'H"“-L,' s EE
Eoo ‘:"]
o e) 3

) R
- o - -
'-\:?'Q' :{-‘; £
o =t 5 3
ﬁ-\. .\ -r'

Fig. 2. The square of the difference between individual input pixels and the weights
of feature map neurons connected to those pixels. The abscissa represents linear range
of feature map neurons near to the competition winner, and the ordinate shows the
difference. The best match for individual inputs falls in a very near location to the
winner.

n
Dj =Y (wmj—Xi)?, jE€NR ®)

i=1
After that, neuron ¢ with minimum distance D, will be considered as the final
SOM winner if CT condition is satisfied, otherwise this competition is neglected
and the input image is considered as gesture transition image not posture image.

De =min(Dy), j € NR (9)
j
if (D, <CT) then C is the final SOM Winner (10)

Of course, the value of CT differs from application to application, so it is better to
calculate its value empirically. For example, it can be considered as the minimum
D, value for all postures in the given application. However, it is clear that the
winner competition in RSOM algorithm can reduce the required computations
to reach the winner. Since the computations in the first and second phase of
the algorithm depend on the values of PUR and NR, respectively. Given that
PUR<< 1 and NR<< m.

5 Dynamic Gesture Recognition

SOM network is implemented to recognize dynamic hand gestures of Jan-Ken-
Pon game. The game includes three hand postures called GUU, CHUKI, and
PAA as shown in figure 3 respectively. First, the network feature map is con-
structed using Kohonen competition algorithm. The training images are collected
from different persons under the same lighting condition.

260 Tarek El.Tobely et al.

Fig. 3. Three learning images for the postures of Jan-Ken-Pon game.

After learning, the feature map of the network divided into three clusters,
one for each posture. Also, the codebooks of the neurons in each cluster are
coded very similar to the images of its posture. Figure 4 shows examples of
three codebook images, one from each cluster.

Fig. 4. The codebook of three neurons from each cluster of SOM network.

During the recognition phase, the network is tested using new images that
never see before. The input is given as a sequence of images that changes the
hand gestures from posture to posture. For example, the images start from GUU
posture and changes to PAA posture. In this case, the network input may be one
of the following six different gestures: GUU-CHUKI, GUU-PAA, CHUKI-GUU,
CHUKI-PAA, PAA-GUU, and PAA-CHUKI. However, for hand gesture of three
postures, the system can accept 12 different gestures.

To test RSOM algorithm, the dynamic gesture images is given to the net-
work as a sequence of 100 images representing the change of hand position from
posture to another. At first, the recognition using the normal SOM competi-
tion algorithm is applied to show the correct correspondence between the input
images and feature map neurons. After that, the same gesture images are used
again to estimate the performance of RSOM algorithm. To implement RSOM
algorithm, it is required to apply its off-line computations. So, the network fea-
ture map is divided into three clusters for GUU, CHUKI, and PAA postures.

Dynamic Hand Gesture Recognition 261

Then, one neuron in the center of each cluster is designated for the cluster repre-
sentative task. The experiments applied on Alpha 21164A / 600 MHz processor,
with gce compiler without optimization. Figure 5 shows the recognition time of
a sequence of 100 images using normal SOM competition algorithm and RSOM
algorithm with different values of PUR and NR.

T

—_—
—E—=0m

==— REOM: N R=3

—t— RZ0M: N =S

= —#— REZOM: WR=7 | —

—T-----A--"q-~--r------9

——T- -~ -A--q---r-----49

I
|
T
1
1
r
1
1
1
1
1
.
1
|

~m- i e e e
T -— e - — B —ae—
1

o @ 1m 150 ao

1¢ Plzel Usage Ralb

Fig. 5. The recognition time (in second)of 100 images using SOM and RSOM with
different values of PUR and NR

The recognition accuracy of RSOM is considered as the rate of selecting the
same winner selected by the normal SOM competition algorithm. The recogni-
tion accuracy of the experiments in figure 5 is shown in figure 6.

The recognition time of one image using normal SOM competition algorithm
is constant and equal 0.124 second. With RSOM algorithm, the recognition time
and accuracy of one image depends on the values of PUR and NR. As shown,
decreasing the PUR decreases the recognition time and accuracy, while increasing
the NR increases the recognition time and accuracy. Of course, the best choice
for PUR and NR is the values that give the minimum recognition time with
100 % accuracy. By comparing the results of two graphs, it is founded that the
minimum recognition time with 100 This means that the network can recognize
more than 25 image-frame per second. Therefore, the network can apply on-line
recognition for dynamic input gestures given from digital camera However, due
to the nature of Jan-Ken-Pon problem, the start-end point’s problem is not exist.
Since, the end point in any gesture can be considered as the start point of the
next. In addition, the network feature map is constructed using different images
from each posture, so the recognition algorithm could avoid the gesture variance
problem and posture ambiguity problem.

262 Tarek El.Tobely et al.

1/ PIxel U=age Ao

Fig. 6. The recognition accuracy of 100 images using SOM and RSOM with different
values of PUR and NR.

The learning data are images with 120*160 pixels and 256 gray levels. The
standard deviations for PAA, CHUKI, and GUU images were 17.80, 20.03, and
19.00, respectively. Also, the distribution of the gray levels in all images was
approximately normal. The sample S is selected as simple random sample with
replacement. From equation 4, for V =5 and Z = 1.96, the sample size k should
be greater than 308. Therefore, for recognition accuracy of 100%, the PUR should
be greater than 0.016, which coincide with the experimental results.

6 Discussion

Gesticulation is doubtless an expressive way for human interaction with com-
puters. In this paper, SOM gesture recognition system is proposed for hand
gesture recognition applications. Where, each gesture is treated as a sequence
of postures. SOM network is prompted to recognize the postures, then pattern
matching technique associated with prediction system are used to recognize the
gestures. However, to allow SOM network to catch the input images in its normal
speed, it is required to reduce the recognition time of one image to the range
of normal video rates, for that RSOM algorithm is proposed. RSOM algorithm
uses random subset of input image to reference the feature map very near to
SOM winner. The algorithm is less depending on the network size, since the
size of the random input subset depends on the standard deviation of the input
image. Also, it is possible to increase the number of feature map neurons and
clusters. Since, whatever the number of neurons in the clusters, only one neu-
ron from each cluster (the cluster representative) enters the winner candidate
competition. The algorithm applied to recognize dynamic hand gestures of Jan-
Ken-Pon game; the experimental results show that the recognition time of one

Dynamic Hand Gesture Recognition 263

image in RSOM algorithm is only 12.4 % of normal SOM recognition algorithm.
In addition, the recognition time of each image reduced to the range of normal
video rates, this means that the system can recognize dynamic gestures in its
normal speed.

References

1. W. Freeman and M. Roth, ”Orientation Histograms For Hand Gesture Recogni-
tion, ” International Workshop on Automatic Face- and Gesture- Recognition, IEEE
Computer Society, Zurich, Switzerland, June 1995.

2. J. Davis and M. Shah, "Recognizing Hand Gestures,” ECCV’94, Pages 331-340,
1994.

3. Y. Kameda, M. Minoh, and K. Tkeda, ” Three Dimension Pose Estimation Of An
Articulated Object From Its Silhouette Image,” In ACCV’93, pages 612-615, 1993
4. T. Kohonen, ”Self-Organizing Maps,” Springer Series in Information Science, 1997.
5. S. Russell and P. Norving, ” Artificial Intelligence, A Modern Approach,” Prentice-

Hall, Inc., 1995.

6. W. Black, and A. Taylor, ” Automatically Clustering Similar Units For Unit Selec-
tion In Speech Synthesis, ” Proceedings of the Fifth European Conference on Speech
Communication and Technology (Eurospeech 97), Greece, September 1997.

7. S. Kung, ”Digital Neural Network,” PTR, Prentice Hall, 1995.

8. B. Gnedenko, I. Pavlov, and I. Ushakov, ” Statistical Reliability Engineering, ” John
Wiely & Sons, Inc.,1999.

9. H. Frank and S. Altheon, ”Statistics, Concepts and Applications,” Cambradge Uni-
versity Press, 1994.

On Approximate Learning by Multi-layered
Feedforward Circuits

Bhaskar DasGupta*! and Barbara Hammer?

L Department of Computer Science, Rutgers University
Camden, NJ 08102, U.S.A.
bhaskare@crab.rutgers.edu
2 Department of Mathematics/Computer Science, University of Osnabriick
D-49069 Osnabriick, Germany
hammereinformatik.uni-osnabrueck.de

Abstract. We consider the problem of efficient approximate learning by multi-
layered feedforward circuits subject to two objective functions.

First, we consider the objective to maximize the ratio of correctly classified points
compared to the training set size (e.g., see [3,5]). We show that for single hid-
den layer threshold circuits with n hidden nodes and varying input dimension,
approximation of this ratio within a relative error ¢/n?, for some positive con-
stant ¢, is NP-hard even if the number of examples is limited with respect to n.
For architectures with two hidden nodes (e.g., as in [6]), approximating the ob-
jective within some fixed factor is NP-hard even if any sigmoid-like activation
function in the hidden layer and e-separation of the output [19] is considered, or
if the semilinear activation function substitutes the threshold function.

Next, we consider the objective to minimize the failure ratio [2]. We show that it
is NP-hard to approximate the failure ratio within every constant larger than 1 for
a multilayered threshold circuit provided the input biases are zero. Furthermore,
even weak approximation of this objective is almost NP-hard.

1 Introduction

Feedforward circuits are a well established learning mechanism which offer a simple
and successful method of learning an unknown hypothesis given some examples. How-
ever, the inherent complexity of training the circuits is till now an open problem for
most practically relevant situations. Starting with the work of Judd [15,16] it turned out
that training is NP-hard in general. However, most work in this area deals either with
only very restricted architectures, activation functions not used in practice, or a training
problem which is too strict compared to practical problems. In this paper we want to
consider situations which are closer to the training problems as they occur in practice.
A feedforward circuit consists of nodes which are connected in a directed acyclic
graph. The overall behavior of the circuit is determined by the architecture A and the
circuit parameters w. Given a pattern or example set P consisting of points (x;; y;), we
want to learn the regularity with a feedforward circuit. Frequently, this is performed by

* Research supported by NSF grant CCR-9800086.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 264-278, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

On Approximate Learning by Multi-layered Feedforward Circuits 265

first choosing an architecture A which computes a function 84 (w, «) and then choos-
ing the parameters w such that 54 (w, x;) = y; holds for every pattern (x;;y;). The
loading problem (or the training problem) is the problem to find weights w such that
these equalities hold. The decision version of the loading problem is to decide (rather
than to find the weights) whether such weights exist that load M onto A.

Some previous results consider specific situations. For example, for every fixed
architecture with threshold activation function or architectures with appropriately re-
stricted connection graph loading is polynomial [8,10,15,20]. For some strange activa-
tion functions or a setting where the number of examples coincides with the number of
hidden nodes loadability becomes trivial [25]. However, Blum and Rivest [6] show that
a varying input dimension yields the NP-hardness of training threshold circuits with
only two hidden nodes. Hammer [10] generalizes this result to multilayered threshold
circuits. References [8,11,12,14,23,27] constitute generalizations to circuits with the
sigmoidal activation function or other continuous activations. Hence finding an opti-
mum weight setting in a concrete learning task may require a large amount of time.

Naturally, the constraint that all the examples must be correctly classified is too
strict. In a practical situation, one would be satisfied if a large fraction (but not neces-
sarily all) of the examples can be satisfied. Moreover, it may be possible that there are
no choices for the weights which load a given set of examples. From these motivations,
researchers have considered an approximate version of the learning problem where the
number of correctly classified points is to be maximized. References [1,2,13] consider
the complexity of training single threshold nodes with some error bounds. Bartlett and
Ben-David [3] mostly deal with threshold architectures, whereas Ben-David et. al. [5]
deals with other concept classes such as monomials, axis-aligned hyper-rectangles,
monotone monomials and closed balls. We obtain NP-hardness results for the task of
approximately minimizing the relative error of the success ratio for a correlated archi-
tecture and training set size, various more realistic activation functions, and training
sets without multiple points. Another objective function is to approximately minimize
the failure ratio. The work in [1,2] considers inapproximability of minimizing the fail-
ure ratio for a single threshold gate. We show that approximating this failure ratio for
multilayered threshold circuits within every constant is NP-hard and even weak approx-
imation of this objective function is almost NP-hard. Several proofs are omitted due to
space limitations. They can be found in the long version of this paper.

2 The Basic Model and Notations

The architecture of a feedforward circuit C is described by a directed interconnection
graph and the activation functions of C. A node v of C computes a function

k
Yo (Z Wy, v Uy, + b'u>
=1

of its inputs wy, , . .., Uy,- Zle Wy, vy, + by 1s called the activation of the node v.
The inputs are either external, representing the input data, or internal, representing the
outputs of the immediate predecessors of v. The coefficients w,, ., (resp. b,) are the

266 Bhaskar DasGupta and Barbara Hammer

weights (resp. threshold) of node v, and v, is the activation function of v. No cycles are
allowed in the interconnection graph of C and the output of a designated node provides
the output of the circuit. An architecture specifies the interconnection structure and
the ~,’s, but not the actual numerical values of the weights or thresholds. The depth
of a feedforward circuit is the length of the longest path of the interconnection graph.
A layered feedforward circuit is one in which nodes at depth d are connected only to
nodes at depth d + 1, and all inputs are provided to nodes at depth 1 only. A layered
(ng,n1,...,np) circuit is a layered circuit with n; nodes at depth ¢ > 1 where ng is
the number of inputs. We assume n; = 1. Nodes at depth j, for 1 < j < h, are called
hidden nodes, and all nodes at depth j, for a particular j, constitute the jth hidden layer.

A I'-circuit C is a feedforward circuit in which only functions in some set I are
assigned to nodes. Hence each architecture A of a I'-circuit defines a behavior function
(.4 that maps from the r real weights and the n inputs into an output value. We denote
such a behavior as the function 34 : R"™" +— R . Some popular choices of the activa-
1 ifx>0

. and the
0 otherwise

tion functions are the perceptron activation function H (z) = {

standard sigmoid sgd(z) = 1/(1 4+ e~).

The loading problem L is defined as follows (e.g., see [0,8]): Given an architecture
A and a set of examples P = {(z;y) | * € R™,y € R}, find weights w so that
for all (x;y) € M: Ba(w,x) = y . In this paper we will deal with those classifica-
tion tasks where y € {0, 1}. Clearly, the hardness results obtained with this restriction
will be valid in the unrestricted case also. An example (x;y) is a positive example if
y = 1, otherwise it is a negative example. An example is misclassified by the circuit if
Ba(w,x) # y, otherwise it is classified correctly.

An optimization problem C' is characterized by a non-negative objective function
me(z, y), where x is an input instance of the problem, y is a solution for z, and m¢(z, y)
is the cost of the solution y; the goal of the problem is to either maximize or min-
imize m¢(x,y) for any particular x, depending on the problem. Denote by opt ()
(or shortly opt(z) if C is clear from the context) the optimum value of m¢(x, y). For
maximization, (opt,(z) — mc(z,y))/opts(x) is the relative error of a solution y. The
objective functions that are of relevance to this paper are as follows:

Success ratio function: mp(x,y) =| {x | fa(w,x) = y} | /|P)| is the fraction of
the correctly classified examples compared to the training set size (e.g., see [3]).

Failure ratio function: mc(z,y) =| {x | Sa(w,z) # y} |. If opto(z) > 0,
mys(z,y) = mc(z,y)/opto(z) is the ratio of the number of misclassified ex-
amples to the minimum possible number of misclassifications when at least one
misclassification is unavoidable (e.g., see [2]).

3 Approximating the Success Ratio Function m,

We want to show that in several situations it is difficult to approximate m, for a loading
problem L. These results would extend the results of [3] to more complex situations.
For this purpose, the L-reduction from the so-called MAX-k-cut problem to a loading
problem which is constructed in [3] is generalized such that it can be applied to several

On Approximate Learning by Multi-layered Feedforward Circuits 267

further situations as well. Since approximating the MAX-k-cut problem is NP-hard, the
NP-hardness of approximability of the latter problems follows.

Definition 1. Given an undirected graph G = (V, E) and k > 2 in N, the MAX-k-cut
problem is to find a function ¢ : 'V — {1,2,...,k}, such that |{(u,v) € E|¢(u) #
P(v)} /| E| is maximized. The set of nodes in V which are mapped to i in this setting
is called the ith cut. The edges (v;, v;) in the graph for which v; and v; are contained
in the same cut are called monochromatic, all other edges are called bichromatic.

Theorem 1. [17] It is NP-hard to approximate the MAX-k-cut problem within relative
error smaller than 1/(34(k — 1)) for k > 2, and within error smaller than c/ k>, ¢ being
some constant, k > 3, even if solutions without monochromatic edges exist.

The concept of an L-reduction was defined in [21]. The definition stated below is a
slightly modified version of [2 1] that will be useful for our purposes.

Definition 2. An L-reduction from a maximization problem C to a maximization prob-
lem C5 consists of two polynomial time computable functions T and Ts, two constants
«, B > 0, and a parameter 0 < a < 1 with the following properties:

(@) For each instance I, of C1, algorithm T produces an instance I of Cs.

(b) The maxima of I and I, opt(I1) resp. opt(I2), satisfy opt(l2) < « opt(ly).

(¢) Given any solution of the instance I of Cy with cost co such that the relative error
of ¢ is at most a, algorithm Ty produces a solution I of Cy with cost ¢y satisfying
(opt(f1) = c1) < B (opt(l2) — c2).

If Cy is hard to approximate within relative error a/(af3) then Cs is hard to approxi-
mate within relative error a.

Consider an L-reduction from the MAX-k-cut problem to the loading problem L
with objective function m, where the reductions performed by 77 and 7% have the fol-
lowing additional properties. Given an instance I; = (V, E) of the MAX-k-cut prob-
lem, assume that 7} produces in polynomial time an instance I», a specific architecture
and an example set in R™ x {0, 1} of the loading problem L with training set:

— 2|E| copies of each of some set of special points Py (e.g. the origin),
— for each node v; € V, d; copies of one point e;, where d; is the degree of v;,
— for each edge (v;, v;) € E, one point e;;.

Furthermore, assume that the following properties are satisfied:

(i) For an optimum solution for I; the algorithm 7} finds an optimum solution of the
instance I of the corresponding loading problem L in which all special points Py
and all points e; are correct classified and exactly those points e;; are misclassified
which correspond to a monochromatic edge (v;, v;) in an optimal solution of I;.

(i) For any approximate solution of the instance 5 of the loading problem L which
classifies all special points in Py correctly, 75 computes an approximate solution
of the instance I; of the MAX-k-cut problem such that for every monochromatic
edge (v;, v;) in this solution, either e;, e;, or e;; is misclassified.

268 Bhaskar DasGupta and Barbara Hammer

An analogous proof to [3] yields the following result:

Theorem 2. Approximation of the above loading problem within relative error smaller
than ((k — 1)e)/(k(2|Po| + 3)) is NP-hard since the above reduction is an L-reduction
witha =k/(k—1), 3=2|Py| +3,anda = (k—1)/(k* (2| Py| + 3)).

3.1 Application to Multi-layered Feedforward Circuits

First we consider H-circuits, H (z) being the perceptron activation function. This type
of architecture is common in theoretical study of neural networks (e.g., see [22,24]) as
well as in their practical applications (e.g., see [28]). Assume that the first layer contains
the input nodes 1, ..., n, h 4+ 1 denotes the depth of the H-circuit, and n; denotes the
number of nodes at depth <. An instance of the loading problem will be represented by a
tuple (n, n1,ne, ..., np, 1) and by an example set with rational numbers. The following
fact is an immediate consequence of Theorem 2 in [3]:

For any h > 1, constant n; > 2 and any ne, ..., ny € N, it is NP-hard to approxi-
mate the success ratio function m, with instances (N, P), where N is the architecture
of a layered {(n,n1,...,np,1) | n € N} H-circuit and P is a set of examples from
Q™ x {0, 1}, with relative error at most (68n12™" + 13613 + 136n3 + 170n,)~!.

Correlated Architecture and Training Set Size The above training setting may be un-
realistic in practical applications where one would allow larger architectures if a large
amount of data is to be trained. One strategie would be to choose the size of the archi-
tecture such that valid generalization can be expected using well known bounds in the
PAC setting [26]. Naturally the question arises about what happens to the complexity
of training if one is restricted to situations where the number of examples is limited
with respect to the number of hidden nodes. One extreme position would be to allow
the number of training examples to be at most equal to the number of hidden nodes.
Although this may not yield valid generalization, the decision version of the loading
problem becomes trivial because of [25], or, more precisely:

If the number of hidden nodes in the first hidden layer is at least equal to the num-
ber of training examples and the threshold activation function, the standard sigmoidal
function, or the semilinear activation function (or any function ¢ such that the class of
o-circuits possesses the universal approximation capability as defined in [25]) is used
then the error of an optimum solution of the loading problem is determined by the
number of contradictory training examples (i.e. (z;y1) and (x; y2) with y1 # y2.)

However, the following theorem yields an inapproximability result even if we re-
strict to situations where the number of examples and hidden nodes are correlated.

Theorem 3. Approximtion of the success ratio function my, with relative error smaller
than ¢/ k3 (c is a constant, k is the number of hidden nodes) is NP-hard for the loading
problem with instances (A, P) where A is a layered (n, k, 1)-H-architecture (n and k
may vary) and P C Q" x {0, 1} is an example set with k3> < |P| < k* which can be
loaded without errors.

Proof. The proof is via L-reduction from the MAX-3-cut problem with ¢ and 3 depend-
ing on k. The algorithms 77 and 75, respectively, will be defined in two steps: mapping

On Approximate Learning by Multi-layered Feedforward Circuits 269

an instance of the MAX-3-cut problem to an instance of the MAX-k-cut problem with
appropriate k and size of the problem and to an instance of the loading problem, after-
wards, or mapping a solution for the loading problem to a solution of the MAX-k-cut
problem and then to a solution of the MAX-3-cut problem afterwards, respectively.

We first define T7: given a graph (V, E) define k = |V| - |E| (w.l.o.g. k > 3) and
(V,E") with V! = V U {vpy |41, Uy k-3t B = EU{(vi,v5) | i € {|[V] +
L..,|VI+k—=38}j7e{l,....|V|+ k — 3}\{i}} where the new edges in E’ have
the multiplicity 2|E|. Reduce (V’, E’) to a loading problem for the architecture with
n = |V'| + 3, k as above, and examples

(I) 2|E’| copies of the origin (0"; 1),
(II) d; copies of the point e;, i.e. (0,...,0,1,0,...,0;0) (the 1 is at the ith position
from left) for each node v; € V' where d; is the degree of v;,

(IOII) a vector e;; for each edge (v;,v;) € E’: (0,...,0,1,0...,0,1,0,...,0;1) (the
numbers 1 are at the ¢th and jth positions from left),

(IV) 2|E’| copies of each of the points (01V'I, pii 1:1), (01V', n%, 1;0), where p*/ and
n' are constructed as follows: define the points %/ = (4(i — 1) + j,j(i — 1) +
4((i—2)+...+1)) fori € {1,...,k}, j € {1,2,3}. These 3k points have the
property that if three of them lie on one line then we can find an ¢ such that the three
points coincide with 2!, 22, and z*3. Now we divide each point into a pair p*
and n¥ of points which are obtained by a slight shift of %/ in a direction that is
orthogonal to the line [z, **]. Formally, p¥/ = x¥ +¢N; and n¥ = % —eN,,
where IN; is a normal vector of the line [z'*, 2*3] with a positive second coefficient
and e is a small positive value. € can be chosen such that the following holds:

Assume one line separates three pairs (n‘171, pi1i1), (n2J2 pi2J2) and

(nisJs pisJs), then necessarily i1 = iy = i3.
This property is fulfilled for e < 1/(24 - k(k — 1) + 6) due to Proposition 6 of [20],
N being a vector of length 1. Consequently, the representation of the points 1%
and p¥ is polynomial in n and k.

Note that the number of points is k3° < 5|E’| + 12k|E’| < k* for large |V|. An
optimum solution of the instance of the MAX-3-cut problem gives rise to a solution
of the instance of the MAX-k-cut problem with the same number of monochromatic
edges via mapping the nodes in V' N V' to the same three cuts as before and defining
the ith cut by {v|y4;} fori € {1,...,k — 3}. This solution can be used to define a
solution of the instance of the loading problem as follows: The jth weight of node ¢
—1 if v; is in the ith cut
2 otherwise,

0.5. The weights (|V’| + 1,|V’| + 2,|V’| + 3) of the ith node are chosen as (—i +
1,1,—0.5+2-i(i — 1)) which corresponds to the line through the points !, 2, and
2. The output unit has the bias —k + 0.5 and weights 1, i.e. it computes an AND.
With this choice of weights one can compute that all examples except the points e;;
corresponding to monochromatic edges are mapped correctly.

Conversely, an optimum solution of the loading problem classifies all points in (I),
(IT), and (IV) and all points e;; corresponding to edges in E'\ E correct because of
the multiplicities of the respective points. We can assume that the activations of the
nodes do not exactly coincide with O when the outputs on P are computed. Consider the

in the hidden layer is chosen as and the bias is chosen as

270 Bhaskar DasGupta and Barbara Hammer

restriction of the circuit mapping to the plane {(0, ..., 0, Zp4+1, Tnt2, 1) | Tnt1, Tz €
R}. The points p*/ and n% are contained in this plane. Because of the different outputs
each pair (p*/, n'/) is to be separated by at least one line defined by the hidden nodes. A
number 3% of such pairs exists. Therefore, each of the lines defined by the hidden nodes
necessarily separates three pairs (p*/, n%/) with j € {1,2, 3} and nearly coincides with
the line defined by [z‘!, z*3]. Denote the output weights of the circuit by wy, . .., wy
and the output bias by 6. We can assume that the ith node nearly coincides with the ith
line and that the points p* are mapped by the node to the value 0. Otherwise we change
all signs of the weights and the bias in node 7, we change the sign of the weight w;, and
increase @ by w;. But then the points p*? are mapped to 0 by all hidden nodes, the points
n*? are mapped to 0 by all but one hidden node. This means that § > 0, 0 + w; < 0
for all ¢ and therefore § + w;, + ... + w;, < 0 forall iy,...,4 € {1,...,k} with
[> 1. This means that the output unit computes the function NAND : (z1,...,z,) —
-1 A... /A —x, on binary values.

Define a solution of the instance of the MAX-k-cut problem by setting the ith cut ¢;
as {v; | the ¢th hidden node maps e; to 1}\(c; U ... U ¢;—1). Assume some edge
(v4,v;) is monochromatic. Then e; and e; are mapped to 1 by the same hidden node.
Therefore e;; is classified wrong. Note that all e;; corresponding to edges in E\E’
are correct, hence the nodes v|y |41, . . ., V| |+x—3 each form one cut and the remaining
nodes are contained in the remaining three cuts. Hence these three cuts define a solution
of the instance of the MAX-3-cut problem such that almost edges corresponding to
misclassified e;; are monochromatic.

Denote by opt; the value of an optimum solution of the MAX-3-cut problem and
by opt, the optimum value of the loading problem. We have shown that

ont. — 1Elopt + (1E"| — |E|) + 4] E| + 12| B'[k _
Pla = 51E] + 12]E'|k =

3
5 Optl .

Next we construct 75. Assume that a solution of the loading problem with rela-
tive error smaller than ¢/k® is given. Then the points (I) and (IV) are correct due
to their multiplicities. Otherwise the relative error of the problem would be at least
|E'|/(5|E'| + 12| E'|k) > ¢/k? for appropriately small c and large k. As before we can
assume that the output node computes the function € — —z1 A ... A —zy. Define opt,
to be the value of an optimum solution of the loading problem and I, the value of the
given solution. Assume some point e;; corresponding to an edge in E"\ E is misclassi-
fied. Then 7% yields an arbitrary solution of the MAX-3-cut problem. For the quality I;
of this solution compared to an optimum opt, we can compute

51E'| + 12|E' |k

opt, —I; <1< B

(opty — I2).
This holds because an optimum solution of the loading problem classifies at least a
number of | E| points more correct than in the solution considered here.

If all e;; corresponding to edges in E'\ E are correct then we define a solution of the
MAX-3-cut problem via the activation of the hidden nodes as above. Remaining nodes
become members of the first cut. An argument as above shows that each monochromatic

On Approximate Learning by Multi-layered Feedforward Circuits 271

edge comes from a misclassification of either e;, e;, or e;;. Hence

51E'| + 12|E'|k

opty —I1 <]

(opty — I2).
Setting v = 3/2, 3 = ¢- k3 > (5|E’| + 12| E'|k) /| E| for some constant ¢ and using
Theorem 1 yields the result as stated above. a

The (n,2,1)-{sgd, Hc}-net The above result deals with realistic circuit structures.
However, usually a continuous and differentiable activation function is used in practice.
A very common activation function is the standard sigmoid activation sgd(z) = 1/(1+
e~ 7). Here we consider the loading problem with a feedforward architecture of the
form (n, 2, 1) where the input dimension n is allowed to vary. The sigmoidal activation
function is used in the two hidden nodes. The output is the function

0 ifxr < —e,
H.(z) = < undefined if —e <z <e,
1 otherwise .

The purpose of this definition is to enforce that any classification is performed with
a minimum separation accuracy e. Furthermore, we restrict to solutions with output
weights whose absolute values are bounded by some positive constant B. This setting
is captured by the notion of so-called e-separation (for example, see [19]). Formally, the
circuit computes the function §4(w, x) = H. (o sgd(alx +ag) + Fsgd(b'x +bo) +)
where w = («, 8,7, @, ao, b, by) are the weights and thresholds, respectively, of the
output node and the two hidden nodes and ||, |3| < B for some positive constant B.

Theorem 4. It is NP-hard to approximate the my with relative error smaller than
1/2244 for the architecture of a {(n,2,1) | n € N}-circuit with sigmoidal activation
Sfunction for the hidden nodes, output activation function H, with 0 < ¢ < 0.5, weight
restriction B > 2 of the output weights, and examples from Q™ x {0, 1}.

The proof consists in an application of Theorem 2 and a careful examination of the ge-
ometric form of the classification boundary defined by those types of networks. It turns
out that some argumentation can be transferred from the standard perceptron case since
some geometrical situations merely correspond to the respective cases for perceptron
networks. However, additional geometric situations may take place which are excluded
in our setting with appropriate points in the set of special points P in near optimum so-
lutions. Due to the situation of e-separation it turns out that the result transfers to more
general activation functions:

Definition 3. Two functions f, g : R — R are e-approximates of each other if | f (x) —
g(x)| < € holds for all x € R.

Corollary 1. It is NP-hard to approximate the success ratio function mp, with relative
error smaller than 1/2244 for {(n,2,1) | n € N}-circuit architectures with activation
function o in the hidden layer and H. in the output, € < 1/3, weight restriction B > 2,
and examples from Q™ x {0, 1}, provided o (x) is €/ (4B)-approximate to sgd(z).

272 Bhaskar DasGupta and Barbara Hammer

The (n, 2,1)-{lin, H }-net In this section, we prove the NP-hardness of the approx-
imability of the success ratio function with the semilinear activation function commonly
used in the neural net literature [7,8]:

0 ifz<0
lin(z)=qz if0<z<1
1 otherwise

This function captures the linearity of the sigmoidal activation at 0 as well as the asymp-
totic behavior. Note that the following result does not require e-separation.

Theorem 5. It is NP-hard to approximate m, with relative error smaller than 1,/2380
for the architecture of {(n, 2, 1) |n € N}-circuit with the semilinear activation function
in the hidden layer and the threshold activation function in the output.

Again the proof consists in an application of Theorem 2 and an investigation of the
geometrical form of the classification boundaries which enables us to define appropriate
algorithms 73 and T5.

Avoiding Multiplicities In the reductions of previous sections, examples with multi-
plicities were contained in the training sets. In the practical relevant case of neural net-
work training, patterns are often subject to noise. Hence the points do not come from a
probability distribution with singletons, i.e. points with nonzero probability. As a con-
sequence the question arises as to whether training sets where each point is contained
at most once yield NP-hardness results for approximate training as well.

The reduction of the MAX-k-cut problem to a loading problem can be modified as
follows: T3 yields the mutually different points:

— aset Py of points pg,j =1,...,3|E| for each i,
— for each node v;, points eg, 7 =1,...,2d;, where d; is the degree of v;,
— for each edge (v;, v;), two points e;; and o;;.

Assume, T3 and 75 satisfy the following properties:

(i’) For an optimum solution of the MAX-k-cut problem one can find an optimum so-
lution of the instance of the corresponding loading problem L in which the special
points Py and all e/ points are correctly classified and exactly the monochromatic
edges (v;, v;) lead to misclassified points e;; or o;;.

(ii”) If for each ¢ at least one p{ is correct, 75 computes in polynomial time an ap-
proximate solution where, for each monochromatic edge (v;,v;), one of the points
e;; or 0;; or all points e! (I = 1,...,3|E|) or all points eé- (=1,...,3|F]) are
misclassified.

An analogous proof to [3] shows the following:

Theorem 6. Under the assumptions stated above, an L-reduction with constants o =
k/(k—1), 8=3|Py|+6, anda = (k—1)/(k*(3|Po| + 6)) arises.

Corollary 2. The reductions for general perceptron circuits and in Theorems 4 and 5
can be modified such that (i’) and (ii’) hold. Hence minimizing the relative error within
some constant is NP-hard even for training sets without multiple points in these situa-
tions.

On Approximate Learning by Multi-layered Feedforward Circuits 273

4 Approximating the Failure Ratio Function m

Given an instance x of the loading problem, denote by m¢(z, y) the number of exam-
ples in the training set misclassified by the circuit represented by y. Given ¢, we want to
find weights such that opt(2) < me(z,y) < ¢- opts(x). The interesting case is with
errors, i.e. opto () > 0. Hence we restrict to the case with errors and investigate if the
failure ratio my = mc(z,y)/opt-(x) can be bounded from above by a constant. We
term this problem as approximating the minimum failure ratio within c while learning in
the presence of errors [2]. It turns out that the approximation is NP-hard within a bound
which is independent of the circuit architecture. For this purpose we use a reduction
from the set-covering problem.

Definition 4 (Set Covering Problem [9]). Given a set of points S = {s1,...,sp} and
a set of subsets C = {C1,...,Cp}, find indices I C {1,...,m} such thatJ;.; C; =
S. In this case the sets C;,1 € 1, are called a cover of S. A cover is called exact if the
sets in a cover are mutually disjoint.

For the set-covering problem the following result holds, showing that it is hard to ap-
proximate within every factor ¢ > 1:

Theorem 7. [4] For every ¢ > 1 there is a polynomial time reduction that, given an
instance of SAT, produces an instance of the set-covering problem and a number
K € N with the properties: if ¢ is satisfiable then there exists an exact cover of size K,
if p is not satisfiable then every cover has size at least ¢ - K.

Using Theorem 7 Arora et.al. [2] show that approximating the minimum failure ratio
function within a factor of ¢ (for any constant ¢ > 1) is NP-hard for a single threshold
node if all the input thresholds are set to zero. We obtain the following result.

Theorem 8. Assume that we are given a layered H-circuit where the thresholds of the
nodes in the first hidden layer are fixed to 0 and let ¢ > 1 be any given constant. Then
the problem of approximating minimum failure ratio my while learning in the presence
of errors within a factor of c is NP-hard.

Proof. Without loss of generality, assume that the circuit contains at least one hidden
layer. Assume that we are given a formula (. Transform this formula with the given
constant ¢ to an instance (S = {s1,...,5p},C = {C1,...,Cy}) of the set-covering
problem and a constant K such that the properties in Theorem 7 hold. Transform this
instance of the set-covering problem to an instance of the loading problem for the given
architecture with input dimension n = |C| 4+ 2 + ny + 1 where n; denotes the number
of hidden nodes in the first hidden layer and the following examples from Q™ x {0, 1}:

(@ (e;,0,1,0m" %1 1), (—e;,0,1,0™m+1; 1), where e, is the ith unit vector in RI¢1,

(I) ¢ - K copies of each of the points (es,, —1,1,0"1: 1), (—e,,,1,1,0m 71 1),
where e, € {0, 1}/l is the vector with jth component as 1 if and only if 5; € C},
ie{l,...,p},

(III) ¢ - K copies of each of (0/°I,1,0,0™*;1), (0/°I,1/(2m),1,0™*;1), and
(01€1, —1/(2m), 1,0™*1; 0), where the component |C| + 1 is nonzero in all three
points and the component |C| + 2 is nonzero in the latter two points, m = |C|,

274 Bhaskar DasGupta and Barbara Hammer

(IV) ¢ - K copies of each of (0/€1%2 p. 1;0), (0I€1+2 p, 1;1), (01€1+2 2, 1;1),
(O‘C‘“7 Z4,1;0), where the points p;, Z;, z; are constructed as follows: Choose
ni + 1 points in each set H; = {x = (x1,22,...,%n,) € R™ |z; = 0,2; >
0Vj # i} (denote the points by z1, zo, ... and the entire set by Z) such that any
given ny + 1 different points in Z lie on one hyperplane if and only if they are
contained in one H;. For z; € H; define Z; € R" by Z; = (zj1,..., 2ji—1,%ji +
€, 25i41,- -+, Zjn1)7 z; € RMbyz; = (Zjl, ey 215250 = € Zjidly s Zj"ll)?
for some small value € which is chosen such that the following property holds: if
one hyperplane in R™* separates at least ny + 1 pairs (2;, z;), these pairs coin-
cide with the ny + 1 pairs corresponding to the ny + 1 points in some H;, and the
separating hyperplane nearly coincides with the hyperplane through H;.

For an exact cover of size K, let the corresponding set of indices be I = {i1,...,ix}.
Define the weights of a threshold circuit such that the ¢th node in the first hidden layer
has the weights (e7, 1,1/(4m), e;, 0), where the jth component of e; € {0, 1}1°lis 1if
and only if j € I and e; is the ¢th unit vector in R"!. The remaining nodes in the other
layers compute the function x — x; A ... A x; of their inputs ;. Since the cover is
exact, this maps all examples correctly except K examples in (I).

Conversely, assume that every cover has size at least ¢ - K. Assume some weight
setting misclassifies less than ¢ - K examples. We can assume that the activation of ev-
ery node is different from 0 on the training set: for the examples in (IV) the weight w,,
serves as a threshold, for the points in (I), (II), and (III) except for (0|C|, 1,0m+2, 1)
the weight w)c|42 serves as a threshold, hence one can slightly change the respec-
tive weight which serves as a threshold without changing the classification of these
examples such that the activation becomes nonzero. Assuming that the activation of
(0|C|7 1,0™%2: 1) is zero we can slightly increase the weight w|c|+1 such that the sign
of the activation of all other points which are affected does not change. Because of the
multiplicity of the examples the examples in (II)-(IV) are correctly classified. We can
assume that the output of the circuit has the form G4 (w,x) = fi(x) A ... A fn, ()
where f; is the function computed by the ith hidden node in the first hidden layer, be-
cause of the points in (IV). This is due to the fact that the points z; and z; enforce the
respective weights of the nodes in the first hidden layer to nearly coincide with weights
describing the hyperplane with ith coefficient zero. Hence the points p, are mapped
to the entire set {0, 1}™ by the hidden nodes in the first hidden layer and determine
the remainder of the circuit function. Hence all nodes in the first hidden layer classify
all positive examples except less than ¢ - K points of (I) correctly and there exists one
node in the first hidden layer which classifies the negative example in (III) correctly
as well. Consider this last node. Denote by w the weights of this node. Because of
(), w41 > 0. Define I = {i € {1,...,|C[} | [wi| > wjcp+1/(2m)}.

Assume {C; | i € I} forms a cover. Because of (III) we find wjc|41/(2m) +
wic|4+2 > 0 and —w|ci41/(2m) 4+ wicj42 < 0. Hence one of the examples in (I) is
classified wrong for every ¢ € I. Hence at least ¢ - K examples are misclassified.

Assume that {C; | ¢ € I'} does not form a cover. Then one can find for some i < | S|
and the point (e,,, —1,1,0™) in (I) an activation < m - wjc|41/(2m) — wic|41 +
W|o|+2 = W|o|+2 —W|c|+1/2 Which is negative because —wjc|41/(2m) +w|c|42 < 0,
w)c|+1 > 0 (IID). This yields a misclassified example with multiplicity c - K. a

On Approximate Learning by Multi-layered Feedforward Circuits 275

One can obtain an even stronger result indicating that not only approximation within an
arbitrary factor is NP hard but even approximation within a factor which is exponential
in the input length is not possible unless NP C DTIME(n‘”'-“‘”g")). For this purpose, we
use a reduction from the so called label cover problem:

Definition 5 (Label Cover). Given a bipartite graph G = (V,W, E)with E C V xW,
labels B, D, and a set II C E x B x D. A labeling consists of functions P : V — 2B
and Q : W — 2P which assign labels to the nodes in the graph. The cost of a labeling
is the number) ., |P(v)|. An edge e = (v,w) is covered if both, P(v) and Q(w)
are not empty and for all d € Q(w) some b € P(v) exists with (e,b,d) € II. A total
cover is a labeling such that each edge is covered.

For the set-covering problem the following result holds, showing that it is almost NP-
hard to obtain weak approximations:

Theorem 9. [2,18] For every € > 0 there exists a quasipolynomial time reduction from
the satisfiability problem to the label cover problem which maps an instance @ of sizen
to an instance (G, II) of size N < orev(logn) yyith the following properties:

If o is satisfiable then (G, IT) has a total cover with cost |V|.

If o is not satisfiable then every total cover has cost at least glog”? 7 N [V].
Furthermore, (G, IT) has in both cases the property that for each edge e = (v, w) and
b € B at most one d € D exists with (e, b,d) € II.

Via this Theorem and ideas of Arora et.al. [2] the following can be proved:

Theorem 10. Assume that we are given a layered H-circuit where the thresholds of
the nodes in the first hidden layer are fixed to 0 and let € > 0 be any given constant. If
the problem of approximating minimum failure ratio my while learning in the presence
of errors within a factor of glog” ¢ N N being the size of the respective input, is
polynomial time, then NP C DTIME(n/*"(108™)),

Proof. Assume that we are given a formula ¢. Transform this formula with the given
constant € to an instance (G, IT) of the label cover problem with the properties as de-
scribed in Theorem 9. W.1.0.g. does the network contain at least one hidden layer.

First, we delete all (e = (v, w), b, d) in IT such that for some edge e’ incident to v
no d’ exists with (e’, b, d') € IT. Those labels are called valid. The costs for a total cover
remain |V if ¢ is satisfiable. Otherwise, this can at most increase the costs. For each
e € Fandb € Bauniqued € D exists such that (e, b, d) € II. We denote this element
by d(e, b). We can assume that a total cover exists, since this can be polynomially tested.

Now transform this instance to an instance of the loading problem. The input dimen-
sion is n = no + 2 + nq + 1 where ny denotes the number of hidden nodes in the first
hidden layer, no = |V||B| + |W||D|, E C V x W are the edges, B and D are the la-
bels. The following examples from Q™ x {0, 1} are constructed: (m = max{|B|,|D|},
K = |B| - |E|, the first no components are successively identified with the tuples in
V x B and W x D and denoted via corresponding indices.)

(I) K copies of each of (0"2%2 p,,1;0) (i > 1), (0"272 p,, 1;1), (0"2F2 2;,1;1),
(0"2*%22,;,1;0), where the points p;, Z;, z; are the same points as in the proof of
Theorem 8.

276 Bhaskar DasGupta and Barbara Hammer

(I) K copies of (0/"2!/1,0,0m+1;1),

(II) K copies of (0I"2I,1/(16m?),1,0m+1; 1), (01”21, —1/(16m?),1,0m*1;0),

(IV) K copies of each of the points (e,, —1,1,0" 1 1), (e, —1,1,0™ 1 1), where
e, is 1 precisely at those places (v, b) such that b is a valid label for v and 0 other-
wise, and e,, is 1 precisely at the places (w, d) such thatd € D (v € V,w € W).

(V) K copies of each of the points (—€y—y,a, 1,1,0" 71 1), where —e,_yy 4 is —1
precisely at those places (v, b) such that b is a valid label for v and d is not assigned
to (v — w, b) and at the place (w, d) and 0 otherwise (v — w € E).

(VD) (—eyp,0,1,0"71: 1), where —e,;, is —1 precisely at those places (v, b) such
that b is a valid label for v.

Assume that a label cover with costs |V exists. Define the weights for the neurons in
the first computation layer by w, ;) = 1 <= bis assigned to v, w(, q) =1 < d
is assigned to w, Wy, +1 = 1, Wn,+2 = 1/(32m?). If a hidden layer is contained, the
remaining coefficients of the i hidden neuron in the first hidden layer are defined
by Wy, +2+s = 1, the remaining coefficients are 0. The neurons in other layers compute
the logical function AND. This maps all points but at most |V'| points in (VI) to correct
outputs. Note that the points in (V) are correct since each v is assigned precisely one b.

Conversely, assume that a solution of the loading problem is given. We show that it
has at least a number of misclassified points which equals the costs of a cover, denoted
by C. Assume for the sake of contradiction that less than C' points are classified wrong.
Since a cover has costs at most K we can assume that all points with multiplicities are
mapped correctly. Because of the same argumentation as in 8 we can assume that the
activation of every node is different from O on the training set. Additionally, we can
assume that the output of the circuit has the form G4(w,x) = fi(x) A ... A fn, (x)
where f; is the function computed by the ith hidden node in the first hidden layer,
because of the points in (I). Hence all nodes in the first hidden layer classify all positive
examples except less than C points of (V) correctly and there exists one node in the first
hidden layer which classifies the negative example in (III) correctly as well.

Denote by w the weights of this node. Because of (II), wy,,|+1 > 0. Label the
node v with those valid labels b such that w(,) > wWn,+1/(4m?). Label the node w
with those labels d such that wy,, qy > wn,+1/(2m). If this labeling forms a total cover,
then we find for all b assigned to v in (VI) an activation smaller than —wy,, 1/ (4m?) +
Wh,+2. Due to (I), wy,, 12 < 1/(16m?) -w,, 11, hence the activation is smaller than 0
and leads to a number of misclassified points which is at least equal to the costs C.

Assume conversely that this labeling does not form a total cover. Then some v or w
is not labeled, or for some label d for w and edge v — w no b is assigned to v with (v —
w,b,d) € Il.Dueto AV) wefind), . w, p)—Wnyt1+Wn, 12 > 0, hence together
with (IID) Y7, w5y > Wnyt1 — Wnyt1/(16m?), hence at least one w, p) is of
size at least w,,11/(2m). In the same way we find), Wy, 4) — Wnyt1 + Wnyi2 > 0,
hence at least one w(,, qy is of size at least wy,1/(2m). Consequently, each node
is assigned some label. Assume that the node w is assigned some d such that the
edge v — w is not covered. Hence w(,,q) > Wn,41/(2m). Due to (V) we find
- Zm“dmvyd(l’) 22 Wob) — Ww,d) T Wnyt1 + Wnyp2 > 0 and due to (IV) we
find vaulidforv Wvb) = Wnyt1 + Wnyto > 0, hence vaulidforv,d(v by = a Wby >
Wny+1 =~ Wny+2 = Zb wiidfor v, d(v — w,b) # a W(0,0) Z Wna+1 — Wnyt2 + Waw,d) — Wny+1 —

On Approximate Learning by Multi-layered Feedforward Circuits 271

Wnyt2 = Ww,d) — 2Wnyt2 > Wnyt1(1/(2m) — 1/(8m?)) > wp,11/(4m). Hence at
least one weight corresponding to a label which can be used to cover this edge is of size
at least wy,, +1/(4m?). O

5 Conclusion

We have shown the NP-hardness of finding approximate solutions for the loading prob-
lem in several different situations. We have considered the question as to whether ap-
proximating the relative error of mj within a constant factor is NP-hard. Compared
to [3] we considered threshold circuits with correlated number of patterns and hidden
neurons and the (n, 2, 1)-circuit with the sigmoidal (with e-separation) or the semilin-
ear activation function. Furthermore, we discussed how to avoid training using multiple
copies of the example. We considered the case where the number of examples is corre-
lated to the number of hidden nodes. Investigating the problem of minimizing the failure
ratio in the presence of errors yields NP-hardness within every constant factor ¢ > 1
for multi-layer threshold circuits with zero input biases, and even weak approximation
of this ratio is hard under standard complexity-theoretic assumptions.

6 Acknowledgments

We would like to thank Eduardo Sontag for bringing the authors together, Peter Bartlett
and Ben-David Shai for sending us their research work (references [3] and [5]) and
pointing out the implications of Theorem 2 of [3], Elizabeth Sweedyk for sending de-
tails about reference [2], and NSF for providing financial support for this research.

References

1. E. Amaldi and V. Kann, The complexity and approximability of finding maximum feasible
subsystems of linear relations, Theoretical Computer Science 147 (1-2), pp.181-210, 1995.
265

2. S. Arora, L. Babai, J. Stern, and Z. Sweedyk, The hardness of approximate optima in lattices,
codes and systems of linear equations, Journal of Computer and System Sciences, 54, pp.
317-331, 1997. 264,265, 266, 273, 275, 277

3. P. Bartlett and S. Ben-David, Hardness results for neural network approximation problems,
to appear in Theoretical Computer Science (conference version in Fischer P. and Simon
H. U. (eds.), Computational Learning Theory, Lecture Notes in Artificial Intelligence 1572,
Springer, pp. 639-644, 1999). 264, 265, 266, 268, 272, 277

4. M. Bellare, S. Goldwasser, C. Lund, and A. Russell, Efficient multi-prover interactive proofs
with applications to approximation problems, in Proceedings of the 25th ACM Symposium
on the Theory of Computing, pp. 113-131, 1993. 273

5. S. Ben-David, N. Eiron and P. M. Long, On the difficulty of approximately maximizing
agreements, 13th Annual ACM Conference on Computational Learning Theory (COLT),
2000. 264,265,277

6. A. Blum and R. L. Rivest, Training a 3-node neural network is NP-complete, Neural Net-
works 5, pp. 117-127, 1992. 264, 265, 266

278

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.
27.

28.

Bhaskar DasGupta and Barbara Hammer

J. Brown, M. Garber, and S. Vanable, Artificial neural network on a SIMD architecture,
in Proc. 2nd Symposium on the Frontier of Massively Parallel Computation, Fairfax, VA,
pp. 43-47, 1988. 272

. B. DasGupta, H. T. Siegelmann, and E. D. Sontag, On the Intractability of Loading Neural

Networks, in Roychowdhury V. P., Siu K. Y., and Orlitsky A. (eds.), Theoretical Advances in
Neural Computation and Learning, Kluwer Academic Publishers, pp. 357-389, 1994. 265,
266, 272

. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-completeness, Freeman, San Francisco, 1979. 273

B. Hammer, Some complexity results for perceptron networks, in Niklasson L., Bodén M.,
and Ziemke, T. (eds.), [CANN’98, Springer, pp. 639-644, 1998. 265

B. Hammer, Training a sigmoidal network is difficult, in Verleysen M. (ed.), European Sym-
posium on Artificial Neural Networks, D-Facto publications, pp. 255-260, 1998. 265

K.-U. Hoffgen, Computational limitations on training sigmoid neural networks, Information
Processing Letters 46(6), pp.269-274, 1993. 265

K.-U. Hoffgen, H.-U. Simon, and K. S. Van Horn, Robust trainability of single neurons,
Journal of Computer and System Sciences 50(1), pp.114-125, 1995. 265

L. K. Jones, The computational intractability of training sigmoidal neural networks, IEEE
Transactions on Information Theory 43(1), pp. 167-713, 1997. 265

J. S. Judd, On the complexity of loading shallow networks, Journal on Complexity 4(3),
pp-177-192, 1988. 264, 265

J. S. Judd, Neural network design and the complexity of learning, MIT Press, Cambridge,
MA, 1990. 264

V. Kann, S. Khanna, J. Lagergren, and A. Panconesi, On the hardness of approximating
max-k-cut and its dual, Technical Report CITCS-1997-2, Chicago Journal of Theoretical
Computer Science, 1997. 267

C. Lund and M. Yannakakis, On the hardness of approximate minimization problems, Jour-
nal of the ACM, 41(5), pp. 960-981, 1994. 275

W. Maass, G. Schnitger, and E. D. Sontag, A comparison of the computational power of
sigmoid versus boolean threshold circuits, in Roychowdhury V. P., Siu K. Y., and Orlitsky
A. (eds.), Theoretical Advances in Neural Computation and Learning, Kluwer Academic
Publishers, pp. 127-151, 1994. 264, 271

M. Megiddo, On the complexity of polyhedral separability, Discrete Computational Geome-
try 3, pp. 325-337, 1988. 265, 269

C. H. Papadimtriou and M. Yannakakis. Optimization, Approximation and Complexity
Classes, Journal of Computer & System Sciences 43, pp. 425-440, 1991. 267

I. Parberry and G. Schnitger, Parallel computation with threshold functions, Journal of Com-
puter and System Sciences, 36, 3 (1988), pp. 278-302. 268

J. Sima, Back-propagation is not efficient, Neural Networks 9(6), pp. 1017-1023, 1996. 265
K.-Y. Siu, V. Roychowdhury and T. Kailath, Discrete Neural Computation: A Theoretical
Foundation, Englewood Cliffs, NJ: Prentice Hall, 1994. 268

E. D. Sontag, Feedforward nets for interpolation and classification, Journal of Computer and
System Sciences 45, pp.20-48, 1992. 265, 268

M. Vidyasagar, A theory of learning and generalization, Springer, 1997. 268

V. H. Vu, On the infeasibility of training with small squared errors, in Jordan M. ., Kearns
M. J., and Solla S. A. (eds.), Advances in Neural Information Processing Systems 10, MIT
Press, pp. 371-377, 1998. 265

B. Widrow, R. G. Winter and R. A. Baxter, Layered neural nets for pattern recognition, IEEE
Transactions on Acoustics, Speech and Signal Processing, 36 (1988), pp. 1109-1117. 268

The Last-Step Minimax Algorithm

Eiji Takimoto'* and Manfred K. Warmuth?**

! Graduate School of Information Sciences, Tohoku University
Sendai, 980-8579, Japan.
t2Q@ecei.tohoku.ac. jp
2 Computer Science Department, University of California, Santa Cruz
Santa Cruz, CA 95064, U.S.A.

manfred@cse.ucsc.edu

Abstract. We consider on-line density estimation with a parameterized
density from an exponential family. In each trial ¢ the learner predicts a
parameter 8;. Then it receives an instance x: chosen by the adversary
and incurs loss —In p(x:|0:) which is the negative log-likelihood of x
w.r.t. the predicted density of the learner. The performance of the learner
is measured by the regret defined as the total loss of the learner minus the
total loss of the best parameter chosen off-line. We develop an algorithm
called the Last-step Minimax Algorithm that predicts with the minimax
optimal parameter assuming that the current trial is the last one. For
one-dimensional exponential families, we give an explicit form of the
prediction of the Last-step Minimax Algorithm and show that its regret
is O(InT'), where T is the number of trials. In particular, for Bernoulli
density estimation the Last-step Minimax Algorithm is slightly better
than the standard Krichevsky-Trofimov probability estimator.

1 Introduction

Consider the following repeated game based on density estimation with a family
of probability mass functions {p(:|0) | 8 € @}, where © denotes the parameter
space. The learner plays against an adversary. In each trial ¢ the learner produces
a parameter 0;. Then the adversary provides an instance x; and the loss of the

learner is L(x¢, 0;) := — Inp(x|0;). Consider the following regret or relative loss
T T
; L(x,60,) = inf_ ; L(x,05).

This is the total on-line loss of the learner minus the total loss of the best
parameter chosen off-line based on all T instances. The goal of the learner is to
minimize the regret while the goal of the adversary is to maximize it. To get a
finite regret we frequently need to restrict the adversary to choose instances from
a bounded space (Otherwise the adversary could make the regret unbounded in

* This work was done while the author visited University of California, Santa Cruz.
** Supported by NSF grant CCR-9821087

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 279-290, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

280 Eiji Takimoto and Manfred K. Warmuth

just one trial). So we let Xy be the instance space from which instances are
chosen. Thus the game is specified by a parametric density and the pair (0, Xp).

If the horizon T is fixed and known in advance, then we can use the optimal
minimax algorithm. For a given history of play (81,®1,...,60:_1,x;—1) of the
past ¢ — 1 trials, this algorithm predicts with

T T
0, = arginf sup inf sup --- inf sup E L(x4,0;) — inf E L(x:,0B) | .
6,60 26X 01+1€0 a1 €X, 67€0 21Xy =1 65€0 —1

The minimax algorithm achieves the best possible regret (called minimaz regret
or the value of the game). However this algorithm usually cannot be computed
efficiently. In addition the horizon T' of the game might not be known to the
learner. Therefore we introduce a simple heuristic for the learner called the Last-
step Minimax Algorithm that behaves as follows: Choose the minimax prediction
assuming that the current trial is the last one (i.e. assuming that 7' = t). More
precisely, the Last-step Minimax Algorithm predicts with

¢ t
6; = arginf sup <Z L(x,,0,) — einef@ZL(a:q,BB)> .
1 BEY =1

0:€O x=€X, q=

This method for motivating learning algorithms was first used by Forster [4] for
linear regression.

We apply the Last-step Minimax Algorithm to density estimation with one-
dimensional exponential families. The exponential families include many funda-
mental classes of distributions such as Bernoulli, Binomial, Poisson, Gaussian,
Gamma and so on. In particular, we consider the game (@, X,), where O is the
exponential family that is specified by a convex! function F' and Xy = [A, B] for
some A < B. We show that the prediction of the Last-step Minimax Algorithm
is explicitly represented as

t

0. =51

(ﬂ%+Bm—Fm+Am)

where a; = 23;11 x4 /t. Moreover we show that its regret is M InT+O(1), where

" _ _
Ve e Fl@)@= (B -a)
A<a<B 2

In particular, for the case of Bernoulli, we show that the regret of the Last-step
Minimax Algorithm is at most

1
ST+ 1)+, (1)

where ¢ = 1/2. This is very close to the minimax regret that Shtarkov showed
for the fixed horizon game [7]. The minimax regret has the same form (1) but
now ¢ = (1/2)In(7/2) ~ .23.

! The function F is the dual of the cumulant function (See next section).

The Last-Step Minimax Algorithm 281

Another simple and efficient algorithm for density estimation with an arbi-
trary exponential family is the Forward Algorithm of Azoury and Warmuth [2].
This algorithm predicts with g, = (a + 22;11 x,)/t for any exponential family.
Here a > 0 is a constant that is to be tuned and the mean parameter u, is an al-
ternate parameterization of the density. For a Bernoulli, the Forward Algorithm
with @ = 1/2 is the well-known Krichevsky-Trofimov probability estimator. The
regret of this algorithm is again of the same form as (1) with ¢ = (1/2) lnn = .57
(See e.g. [5]). Surprisingly, the Last-step Minimax Algorithm is slightly better
than the Krichevsky-Trofimov probability estimator (¢ = .5).

For general one-dimensional exponential families, the Forward Algorithm can
be seen as a first-order approximation of the Last-step Minimax Algorithm.
However, in the special case of Gaussian density estimation and linear regression,
the Last-step Minimax Algorithm is identical to the Forward Algorithm? for
some choice of a. For linear regression this was first pointed out by Forster [4].

In [2] upper bounds on the regret of the Forward Algorithm were given for
specific exponential families. For all the specific families considered there, the
bounds we can prove for the Last-step Minimax Algorithm are as good or better.
In this paper we also give a bound of M In T+ O(1) that holds for a large class of
one-dimensional exponential families. No such bound is known for the Forward
Algorithm.

It is interesting to note that for Gaussian density estimation of unit variance,
there exists a gap between the regret of the Last-step Minimax algorithm and
the regret of the optimal minimax algorithm. Specifically, the former is O(InT'),
while the latter is O(In T'—1InIn T') [10]. This contrasts with the case of Bernoulli,
where the regret of the Last-step Minimax Algorithm is by a constant larger than
the minimax regret.

Open Problems

There are a large number of open problems.

1. Is the regret of the Last-step Minimax Algorithm always of the form O(InT')
for density estimation with any member of the exponential family?

2. Does the Last-step Minimax Algorithm always have smaller regret than the
Forward Algorithm?

3. For what density estimation and regression problems is the regret of the
Last-step Minimax Algorithm “close to” the regret of the optimal minimax
algorithm?

4. Tt is easy to generalize the Last-step Minimax Algorithm to the g¢-last-step
Minimax algorithm where ¢ is some constant larger than one. How does ¢
affect the regret of the algorithm? How large should ¢ be chosen so that the
regret of the algorithm is essentially as good as the minimax algorithm.

2 More strictly, for linear regression the Last-step Minimax Algorithm “clips” the

predictions of the Forward Algorithm so that the absolute value of the predictions
is bounded.

282 Eiji Takimoto and Manfred K. Warmuth

Regret Bounds from the MDL Community

There is a large body of work on proving regret bounds that has its roots in
the Minimum Description Length community [6,11,8,9,12,13]. The definition
of regret used in this community is different from ours in the following two parts.

1. The learner predicts with an arbitrary probability mass function ¢;. In par-
ticular ¢; does not need to be in the model class {p(-|8) | § € O}. On the
other hand, in our setting we require the predictions of the learner to be
“proper” in the sense that they must lie in the same underlying model class.

2. The individual instances @; does not need to be bounded. The adversary is
instead required to choose an instance sequence x1,..., 27 so that the best
off-line parameter @p for the sequence belongs to a compact subset K C 6.
For density estimation with an exponential family, this condition implies
that (1/T) Y1, @ € K.

In comparison with the setting in this paper, it is obvious that part 1 gives more
choices to the learner while part 2 gives more choices to the adversary. Therefore
the regret bounds obtained in the MDL setting are usually incomparable with
those in our setting. In particular, Rissanen [6] showed under some condition on
O that the minimax regret is

nn L +ln/ VII(0)]d6 + o(1), 2)
2 27T K
where ©® C R"™ is of dimension n and
1(6) = (Eg(—0%np(:10)/96,96;))i

denotes the Fisher information matrix of . This bound is quite different from
our bound M InT + O(1).

2 On-line Density Estimation

We first give a general framework of the on-line density estimation problem
with a parametric class of distributions. Let X C R"™ denote the instance space
and @ C R? denote the parameter space. Each parameter 8 € © represents
a probability distribution over X'. Specifically let p(-|@) denote the probability
mass function that 6 represents. An on-line algorithm called the learner is a
function @ : X* — O that is used to choose a parameter based on the past
instance sequence. The protocol proceeds in trials. In each trial £ = 1,2, ... the
learner chooses a parameter 8; = 6(x'~!), where &'~ = (z1,...,2;_1) is the
instance sequence observed so far. Then the learner receives an instance x; € X
and suffers a loss defined as the negative log-likelihood of x; measured by 6,
ie.,

L(mt, Bt) = — lnp(a:t|0t).

The Last-Step Minimax Algorithm 283

The total loss of the learner up to trial T is 23;1 L(xy,0:). Let 6 1 be the
best parameter in hindsight (off-line setting). Namely,

BBT—arglnf L ilit,)

If we regard the product of the probabilities of the individual instances as the
joint probability (i.e., p(z]0) = HtT:1 p(x:]0)), then the best parameter Op 7
can be interpreted as the maximum likelihood estimator of the observed instance
sequence 7. We measure the performance of the learner for a particular instance
sequence &7 € X* by the regret, or the relative loss, defined as

T T
= L(z:,0:) — Y _ L(z1,05.7).
t=1 t=1

The goal of the learner is to make the regret as small as possible. In this paper we
are concerned with the worst-case regret and so we do not put any (probabilis-
tic) assumption on how the instance sequence is generated. In other words, the
preceding protocol can be viewed as a game of two players, the learner and the
adversary, where the regret is the payoff function. The learner tries to minimize
the regret, while the adversary tries to maximize it. In most cases, to get a finite
regret we need to restrict the adversary to choose instances from a bounded
space (Otherwise the adversary could make the regret unbounded in just one
trial). So we let Xy C X be the set of instances from which instances are chosen.
The choice of Aj is one of the central issues for analyzing regrets in our learning
model.

3 Last-step Minimax Algorithm

If the horizon T of the game is fixed and known in advance, then we can use the
minimax algorithm to obtain the optimal learner in the game theoretical sense.
The value of the game is the best possible regret that the learner can achieve. In
most cases, the value of the game has no closed form and the minimax algorithm
is computationally infeasible. Also the number of trials 7' might not be known to
the learner. For this reasons we suggest the following simple heuristic. Assume
that the current trial ¢ is the last one (in other words, assume T = t) and
predict as the Minimax Algorithm would under this assumption. More precisely
the Last-step Minimax Algorithm predicts with

t t
0, = arginf sup (ZL 4,0 ZL Z4,08.1))
q=1

0:€O0 =X, a=1

t
= arginf sup ((x4, 0:) EL Z4,0p.4)) . (3)
q=1

0:€0 =Xy

The last equality holds since the total loss up to trial ¢ — 1 of the learner is
constant for the inf and sup operations.

284 Eiji Takimoto and Manfred K. Warmuth
3.1 Last-step minimax algorithm for exponential families

For a vector 6, 8’ denotes the transposition of 8. A class O of distributions is
said to be an exponential family if parameter § € ©¢ has density function

p(]6) = po(x) exp(8'z — G(9)),

where po(x) represents any factor of density which does not depend on 6. The
parameter 0 is called the natural parameter. The function G(8) is a normal-
ization factor so that [,_, p(x|@)dz = 1 holds, and it is called the cumulant
function that characterizes the family @g. We first review some basic properties
of the family. For further details, see [3,1]. Let g(0) denote the gradient vector
VoG (0). It is well known that G is a strictly convex function and g(€) equals
the mean of z, i.e. g(0) = [, ., zp(z|0)dz. We let g(6) = p and call p the
expectation parameter. Since G is strictly convex, the map ¢g(6) = p has an
inverse: Let f := g~'. Sometimes it is more convenient to use the expectation
parameter p instead of its natural parameter 8. Define the second function F
over the set of expectation parameters as

F(p) = 6'n—G(0). (4)

The function F' is called the dual of G and strictly convex as well. It is easy to
check that f(p) = V,F(u). Thus the two parameters @ and p are related by

= g(0) =VeG(0), (5)
0= f(p) =VuF(w). (6)

For parameter 6, the negative log-likelihood of x is G(8) — 8’z + In Py(x).
Since the last term is independent of 8 and thus does not affect the regret, we
define the loss function simply as

L(z,0) :=G(0) — 0'z. (7

It is easy to see that, for an instance sequence x! up to trial ¢, the best off-line
parameter pp , is given by pp, = 1.4/t (thus, Op; = f(x1.4/t)), where @1 4
is shorthand for 22:1 4. Moreover the total loss of 8p ; is

t

> L(z,,0p.) = —tF(z1.4/t). (8)

g=1

From (3), (7) and (8), it immediately follows that the Last-step Minimax Algo-
rithm for the family @« predicts with

0, = arginf sup (G(0) —O0'xy + tF(x1../t)). 9)
6€0g = €X

The Last-Step Minimax Algorithm 285

3.2 For one dimensional exponential families

In what follows we only consider one dimensional exponential families. Let the
instance space be Xy = [A, B] for some reals A < B. Since F is convex, the
supremum over x; of (9) is attained at a boundary of Xy, i.e., &; = A or x; = B.
So

0, = arginf maX{G(B) — A0+ tF(a, + AJt),G(6) — BO + tF(a, + B /t)}, (10)
6cO¢

where oy = ;. ;—1/t. It is not hard to see that the minimax parameter 6, must
satisfy p, = g(6;) € [A, B]. So we can restrict the parameter space to

Oc.x, = {0 € Oc | 9(0) € [A, B]}.
Since for any 0 € O¢ x,
9
060
the first term in the maximum of (10) is monotonically increasing in 8. Similarly

the second term is monotonically decreasing. So the minimax parameter 8; must
be the solution to the equation

G(0) — A0 + tF(cy + AJt) = G(6) — BO + tF (o + B/t).

(G(o) — A0+ tF(a; + A/t)) —g(6)— A >0,

Solving this, we have

4
Ot:m(F(at+B/t)—F(at+A/t)). (11)

Let us confirm that p, = g(6;) € [A, B]. Since F' is convex,
F(ay + BJt) = Flay + A/t + (B — A)/t)
> Flag+AJt) + flag + A/t)(B — A) /t.
Plugging this into (11), we have 8, > f(a; + A/t). Since g is monotonically
increasing and f = g~ !,
pe=9(0:) = g(flar + Aft)) = ar + Aft > A. (12)
Similarly we can show that
F(a; + AJt) > F(ay + B/t) — f(ouw + B/t)(B — A)/t,
which implies
e = 9(0:) < g(f(a:r + Bft)) = ar + B/t < B.
Hence we proved that u, € [A, B]. Note that this argument also shows that
ar + AJt < p, < oy + B/t

Therefore, the prediction p, of the Last-step Minimax Algorithm (for the ex-
pectation parameter) converges a; = 1, ¢—1/t, which is the prediction of the
Forward Algorithm.

286 Eiji Takimoto and Manfred K. Warmuth

3.3 Analysis on the regret
Let

t t—1
0 = L(w1,0)) =Y L(w4,08:) + »_ L(®@g,0p, 1)
q=1 q=1

Since
T T T
Z(St = ZL(:ct,Ht EL a?t,eBT R(G,azT),
t=1 t=1 t=1

bounding d; for all individual #’s is a way to obtain an upper bound of the regret
R(68,z7). By (12) and (8), the prediction 6, of the Last-step Minimax Algorithm
(given by (11)) satisfies

t
L(z1,0,) — Y L(x4,05,) < G(0:) — AO; + tF(ay + A/t)

g=1

for any x;. Moreover, applying (8) with ¢ replaced by ¢ — 1, we have

iL(:pq,BRt_l) = —(t — I)F(wl__t_l/(t — 1)) = —(t — l)F (tf lat> .

q=1

Hence we have

(St S G(Bt) — Aet + tF(Olt + A/t) - (t — I)F <t i 1at> . (13)

In the subsequent sections we will give an upper bound of the regret by bounding
the right-hand-side of the above formula.

4 Density estimation with a Bernoulli

For a Bernoulli, an expectation parameter u = g(0) represents the probability
distribution over X = {0,1} given by p(0|p) = 1 — p and p(1jp) = p. In this
case we have Og = R, X = Ay = {0,1}, G(0) = In(1 + €%) and F(u) =
plnp+ (1—p)in(l— p@). From (11) it follows that in each trial ¢ the Last-step
Minimax Algorithm predicts with

(o + 1/t) /(1 — o — 1/t) -1/t

0, =tl
! " aft (1 —ag)t-o ’

(14)

where oy = @1 ;—1/t. In other words, the prediction for the expectation param-

eter is
(k+ Dt -k -1+

B B = k) 4 (b + DM (f =k — 1) A1
where k = @1, ;1. This is different from the Krichevsky-Trofimov probability
estimator (the Forward Algorithm with a = 1) [5,2] that predicts with p, =

The Last-Step Minimax Algorithm 287

(k + 1/2)/t. The worst case regret of the standard algorithm was shown® to be
(1/2)In(T + 1) + (1/2) In . Surprisingly, the regret of the Last-step Minimax
Algorithm is slightly better.

Theorem 1. Let 0 be the Last-step Minimazx Algorithm that makes predictions
according to (14). Then for any instance sequence xT € {0,1}*,

R(O,z7) < %ln(T +1)+

DO | =

Proof. Recall that the regret is R(6,z%) = Zle d; and d; is upper-bounded by

(13), i.e.,
¢ (8%
t—1)"

(Note that for the case of Bernoulli the above inequality is an equality.) We can
show that the r.h.s. of the above formula is concave in a; and maximized at
ap = (t — 1)/(2t). Plugging this into (14) we have 6; = 0. So

5 < G(6,) + tF(ay) — (t— 1)F (

5 < G(0) + tF (%) —(t=1)F(1/2)

t—1. t-1 t+1 t+1

=1n2+ 2 In o7 + 2 In T —(t—1)In(1/2)
:%ln(t—1)+t+lln(t+l)—tlnt
:(%ln(t+1)—%lnt>—<%1nt—t_11n(t—1)>.
Therefore
d T+1 T
R(j, z7) :;& < T1n(:r+1)—51n:r

= %m (T +1)(1+1/7)7)

IN

1 1
—In(T+1 —.
2n(+)+2

This completes the theorem.

5 Density Estimation with a General Exponential Family

In this section we give an upper bound of the regret of the Last-step Minimax
Algorithm for a general exponential family, provided that the second and the
third derivative of F(u) is bounded for any u € [A, B]. Note that the Bernoulli
family do not satisfy this condition because the second derivative F"'(u) = 1/pu+
1/(1 — p) is unbounded when p =0 and p = 1.

% This regret is achieved in the case where the sequence consists of all 0s or all 1s.

288 Eiji Takimoto and Manfred K. Warmuth

Theorem 2. Assume that |[F" ()| and |F"'(u)| is upper-bounded by a constant
for any p € [A, B]. Then for any instance sequence xT € [A, B]T, the regret of
the Last-step Minimaz Algorithm is upper-bounded by

R(O,z7) < MInT + O(1),

where

1 _ _
e e Fl@)@= (B -a)
A<a<B 2

Proof. As in the case of the Bernoulli, we will bound

0t <G(O:) — AO, + tF(ay + AJt) — (t — 1)F(ta:/(t — 1))
for each t to obtain an upper bound of the regret R(6,zT) = Z:;r:l d;. The
prediction 6, of the Last-step Minimax Algorithm is given by (11), i.e.,

0, (F(at + BJt) — Fla +A/t)),

_ t

T B-A
where ay = @1 ;—1/t. Applying Taylor’s expansion of F up to the third degree,
we have

F(a;+ B/t) = Flar + A/t) + f(ar + A/t)

B—A f'(ay+AJt) (B— A\’
e He AR (2

+0(1/t%)

= Flas+ A/t) + f(aq +A/t)B;A N fl(;t) <B;A>
+0(1/8%).

Note that the last term O(1/t3) contains the hidden factors f”(a;) and f"(a; +
A/t), which are assumed to be bounded by a constant. So the Last-step Minimax
prediction is rewritten as

0, = flau + AJt) + f'(;‘t) B ; 4, O(1/2).
The Taylor’s expansion of G' gives
G(0.) = Gfla + AN +g(fla + A/ TN 4 o2y
= (o + AJt)f(ayw + AJt) — Fay + AJt)
atfl(at)(B_A) +O(1/t2) (15)

2t

Here we used the relations f = g=! and G(f(u)) = f(u)p — F(p) (See (4) and
(6)). Similarly

(t—1)F <tf lat> - (t— I)F((at F A/ + ()t —1) — A/t))

The Last-Step Minimax Algorithm 289

=(t-1) [F(at + A/t) + fla + Aft) (e /(t = 1) — A[)
+%f’(at A/ ()t —1) — AJt)? + 0(1/t3)]
=@t—1DF(ar+A/t) + (s + AJt) f(ar + AJt) — Af(ar + AJ2)
+%f’(at)(at — A2+ 0(1/82). (16)
Thus, (15) — A0, + tF(ay + A/t) — (16) gives
f(a)(ay — A)(B —

2t
< % +0(1/).

5, <) L o@/)

This establishes the theorem.

5.1 Density estimation with a Gaussian of unit variance

For a Gaussian of unit variance, an expectation parameter p represents the
density

1 1
p(x|p) = Eexp <—§($ - H)2> :
Thus we have Og = R, X = R, X, = [4,B], G(0) = 16” and F(u) = p?. In

-2
this case, the Last-step Minimax Algorithm predicts with
A+ B

2t

0,=p, =+

Since F"'(u) = 1 for all p, Theorem 2 says that the regret of the Last-step
Minimax Algorithm is

R(0.27) < w

Note that for Gaussian density estimation the Last-step Minimax Algorithm
predicts with the same value as the Forward Algorithm. So here we just have
alternate proofs for previously published bounds [2].

InT + O(1).

5.2 Density estimation with a Gamma of unit shape parameter

For a Gamma of unit shape parameter, an expectation parameter p represents
the density

Pll) = e,
In this case we have Og = (—0,0), X = (0,00), Ao = [A4, B], G(0) = —1n(—0)
and F(p) = —1 — In p. The Last-step Minimax Algorithm predicts with

6, = —1/p = _ﬁ (In(as + BJt) — In(ay + A/8)).

290 Eiji Takimoto and Manfred K. Warmuth

Since F"(u) = 1/u?, Theorem 2 says that the regret of the Last-step Minimax

Algorithm is

(B — A)?
8AB

Previously, the O(In T') regret bound is also shown for the Forward Algorithm [2].

However, the hidden constant in the order notation has not been explicitly spec-

ified.

R(6,,2") < InT + O(1).

Acknowledgments

The authors are grateful to Jun’ichi Takeuchi for useful discussions.

References

1. S. Amari. Differential Geometrical Methods in Statistics. Springer Verlag, Berlin,
1985.

2. K. Azoury and M. K. Warmuth. Relative loss bounds for on-line density estima-
tion with the exponential family of distributions. In Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence, pages 31-40, San Francisco,
CA, 1999. Morgan Kaufmann. To appear in Machine Learning.

3. O. Barndorff-Nielsen. Information and Ezponential Families in Statistical Theory.
Wiley, Chichester, 1978.

4. J. Forster. On relative loss bounds in generalized linear regression. In 12th In-
ternational Symposium on Fundamentals of Computation Theory, pages 269-280,
1999.

5. Y. Freund. Predicting a binary sequence almost as well as the optimal biased coin.
In Proc. 9th Annu. Conf. on Comput. Learning Theory, pages 89-98. ACM Press,
New York, NY, 1996.

6. J. Rissanen. Fisher information and stochastic complexity. IEEE Transactions on
Information Theory, 42(1):40-47, 1996.

7. Y. M. Shtarkov. Universal sequential coding of single messages. Prob. Pered. Inf.,
23:175-186, 1987.

8. J. Takeuchi and A. Barron. Asymptotically minimax regret for exponential fami-
lies. In SITA ’97, pages 665—668, 1997.

9. J. Takeuchi and A. Barron. Asymptotically minimax regret by bayes mixtures. In
IEEE ISIT ’98, 1998.

10. E. Takimoto and M. Warmuth. The minimax strategy for Gaussian density esti-
mation. In To appear in COLT2000, 2000.

11. Q. Xie and A. Barron. Asymptotic minimax regret for data compression, gambling,
and prediction. IEEE Trans. on Information Theory, 46(2):431-445, 2000.

12. K. Yamanishi. A decision-theoretic extension of stochastic complexity and its
applications to learning. IEEE Transaction on Information Theory, 44(4):1424—
39, July 1998.

13. K. Yamanishi. Extended stochastic complexity and minimax relative loss analysis.
In Proc. 10th International Conference on Algorithmic Learning Theory - ALT’
99, volume 1720 of Lecture Notes in Artificial Intelligence, pages 26-38. Springer-
Verlag, 1999.

Rough Sets and Ordinal Classification

Jan C. Bioch and Viara Popova

Dept. of Computer Science, Erasmus University Rotterdam
P.O. Box 1738, 3000 DR Rotterdam.
{bioch,popova}@few.eur.nl

Abstract. The classical theory of Rough Sets describes objects by dis-
crete attributes, and does not take into account the ordering of the at-
tributes values. This paper proposes a modification of the Rough Set
approach applicable to monotone datasets. We introduce respectively
the concepts of monotone discernibility matrix and monotone (object)
reduct. Furthermore, we use the theory of monotone discrete functions
developed earlier by the first author to represent and to compute deci-
sion rules. In particular we use monotone extensions, decision lists and
dualization to compute classification rules that cover the whole input
space. The theory is applied to the bankruptcy problem.

1 Introduction

Ordinal classification refers to the category of problems, in which the attributes
of the objects to be classified are ordered. Ordinal classification has been studied
by a number of authors, e.g. [1,16,5,18,12]. The classical theory of Rough Sets
does not take into account the ordering of the attribute values. While this is
a general approach that can be applied on a wide variety of data, for specific
problems we might get better results if we use this property of the problem. This
paper proposes a modification of the Rough Sets approach applicable to mono-
tone datasets. Monotonicity appears as a property of many real-world problems
and often conveys important information. Intuitively it means that if we increase
the value of a condition attribute in a decision table containing examples, this
will not result in a decrease in the value of the decision attribute. Therefore,
monotonicity is a characteristic of the problem itself and when analyzing the
data we get more appropriate results if we use methods that take this additional
information into account. Our approach uses the theory of monotone discrete
functions developed earlier in [2]. We introduce respectively monotone decision
tables/datasets, monotone discernibility matrices and monotone reducts in sec-
tion 2 and consider some issues of complexity. In section 3 we introduce mono-
tone discrete functions and show the relationship with Rough Set Theory. As a
corollary we find an efficient alternative way to compute classification rules. In
section 4 we discuss a bankruptcy problem earlier investigated in [12]. It appears
that our method is more advantageous in several aspects. Conclusions are given
in section 5.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 291-305, 2000.
© Springer-Verlag Berlin Heidelberg 2000

292 Jan C. Bioch and Viara Popova

2 Monotone Information Systems

An information system S is a tuple S = {U, A,V} where: U = {x1,22,...,Zpn} is
a non-empty, finite set of objects (observations, examples), A = {a1,a9,...,am}
is a non-empty, finite set of attributes, and V' = {V1,V4,...,V,,} is the set of
domains of the attributes in A. A decision table is a special case of an information
system where among the attributes in A we distinguish one called a decision
attribute. The other attributes are called condition attributes. Therefore: A = C'U
{d}, C ={a1,aq,...,an} where a; - condition attributes, d - decision attribute.

We call the information system S = {U, CU{d}, V'} monotone when for each
couple z;,z; € U the following holds:

ax(z;) > ap(zj),Va, € C = d(x;) > d(z;) , (1)

where ai(x;) is the value of the attribute aj for the object x;. The following
example will serve as a running example for this paper.

Example 1. The following decision table represents a monotone dataset:

Table 1. Monotone decision table

2.1 Monotone Reducts

Let S = {U,C U {d},V} be a decision table. In the classical rough sets theory,
the discernibility matrix (DM) is defined as follows:

(cij) = { {a € A:a(z;) # a(zy)} ford,j:d(x;) # d(z;) @)

0 otherwise .

The variation of the DM proposed here is the monotone discernibility ma-
triz M4(S) defined as follows:

(ci) = {a € A:a(z;) > a(z;)} fori,j:d(x;) > d(z;) (3)
I 0 otherwise .

Based on the monotone discernibility matrix, the monotone discernibility
function can be constructed following the same procedure as in the classical
Rough Sets approach. For each non-empty entry of the monotone My c¢;; =

Rough Sets and Ordinal Classification 293

{aky s kg, - - ., ax, } we construct the conjunction C' = ap, A ak, A ... A ag,. The
disjunction of all these conjunctions is the monotone discernibility function:
f=CVvCyV...VC,. (4)

The monotone reducts of the decision table are the minimal transversals of
the entries of the monotone discernibility matrix. In other words the monotone
reducts are the minimal subsets of condition attributes that have a non-empty
intersection with each non-empty entry of the monotone discernibility matrix.
They are computed by dualizing the Boolean function f, see [3,2,15]. In section
3.3 we give another equivalent definition for a monotone reduct described from
a different point of view.

Example 2. Consider the decision table from example 1. The general and mono-
tone discernibility matrix modulo decision for this table are respectively:

Table 2. General decision matrix Table 3. Monotone decision matrix
| 1 2 345 | 1 2 345
1 0 1 [
21 a,b 1] 2 a 0
3| b,ec a,bc B 3| bc byec 0
4| a,c bye 0 0 4| a,c bye 0 0
5|a,b,c a,b,c O O 0 5|a,b,c a,b,c O O 0

The general discernibility function is f(a,b,c) = abV ac V be. Therefore, the
general reducts of table 1 are respectively: {a, b}, {a, ¢} and {b, ¢} and the core is
empty. However, the monotone discernibility function is g(a, b, ¢) = aVbe. So the
monotone reducts are: {a, b} and{a, c}, and the monotone core is {a}. It can be
proved that monotone reducts preserve the monotonicity property of the dataset.

Complexity Generating a reduct of minimum length is an NP-hard problem.
Therefore, in practice a number of heuristics are preferred for the generation of
only one reduct. Two of these heuristics are the "Best Reduct” method [13]
and Johnson’s algorithm [I14]. The complexity of a total time algorithm for
the problem of generating all minimal reducts (or dualizing the discernibility
function) has been intensively studied in Boolean function theory, see [3,10,2].
Unfortunately, this problem is still unsolved, but a quasi-polynomial algorithm
is known [11]. However, these results are not mentioned yet in the rough set
literature, see e.g. [15].

2.2 Heuristics

As it was mentioned above, two of the more successful heuristics for generat-
ing one reduct are the Johnson’s algorithm and the ”Best reduct” heuristic.

294 Jan C. Bioch and Viara Popova

Strictly speaking these methods do not necessarily generate reducts, since the
minimality requirement is not assured. Therefore, in the sequel we will make the
distinction between reducts vs minimal reducts. A good approach to solve the
problem is to generate the reduct and then check whether any of the subsets is
also a reduct. The Johnson heuristic uses a very simple procedure that tends
to generate a reduct with minimal length (which is not guaranteed, however).
Given the discernibility matrix, for each attribute the number of entries where it
appears is counted. The one with the highest number of entries is added to the
future reduct. Then all the entries containing that attribute are removed and
the procedure repeats until all the entries are covered. It is logical to start the
procedure with simplifying the set of entries (removing the entries that contain
strictly or non strictly other elements). In some cases the results with and with-
out simplification might be different. The ”Best reduct” heuristic is based on
the significance of attributes measure. The procedure starts with the core and
on each step adds the attribute with the highest significance, if added to the
set, until the value reaches one. In many of the practical cases the two heuristics
give the same result, however, they are not the same and a counter example can
be given. The dataset discussed in section 4, for example, gives different results
when the two heuristics are applied (see [1]).

2.3 Rule Generation

The next step in the classical Rough Set approach [17,15] is, for the chosen
reduct, to generate the value (object) reducts using a similar procedure as for
computing the reducts. A contraction of the discernibility matrix is generated
based only on the attributes in the reduct. Further, for each row of the matrix, the
object discernibility function is constructed - the discernibility function relative
to this particular object. The object reducts are the minimal transversals of the
object discernibility functions.

Using the same procedure but on the monotone discernibility matrix, we can
generate the monotone object reducts. Based on them, the classification rules
are constructed. For the monotone case we use the following format:

if (a;;, > v1) A(ay, = v2) Ao A (a; > ;) thend > viyqq . (5)
It is also possible to construct the classification rules using the dual format:
if (ail S ’Ul) AN (aiz S ’UQ) AN (ail S ’Ul) then d S Vi+1 - (6)

This type of rules can be obtained by the same procedure only considering
the columns of the monotone discernibility matrix instead of the rows. As a
result we get rules that cover at least one example of class smaller than the
maximal class value and no examples of the maximal class.

It can be proved that in the monotone case it is not necessary to generate
the value reducts for all the objects - the value reducts of the minimal vectors
of each class will also cover the other objects from the same class. For the rules

Rough Sets and Ordinal Classification 295

with the dual format we consider respectively the maximal vectors of each class.
Tables 4 and 5 show the complete set of rules generated for the whole table.

A set of rules is called a cover if all the examples with class d > 1 are covered,
and no example of class 0 is covered. The minimal covers (computed by solving
a set-covering problem) for the full table are shown in tables 6 and 7. In this
case the minimal covers correspond to the unique minimal covers of the reduced
tables associated with respectively the monotone reducts {a,b} and {a,c}.

Table 4. Monotone decision rules Table 5. The dual format rules

class d > 2 class d > 1 class d <0 class d <1
a>2 a>1 a<O0Ab<1|b<O0
b>2 a<0Ac<0|c<O0
a>1Ab>1

c>1

Table 6. mincover ab

Table 7. mincover ac

classd>2 |classd > 1 classd > 2 |class d > 1
a>1ANb>1 a>1 c>1 a>1
b>2

Table 8. mincover ab (dual format) Table 9. mincover ac (dual format)

class d <0 |classd <1
a<0ADb<L1 b<0

class d <0 |classd <1
a<0Ac<O0 c<0

The set of rules with dual format is not an addition but rather an alternative
to the set rules of the other format. If used together they may be conflicting
in some cases. It is known that the decision rules induced by object reducts in
general do not cover the whole input space. Furthermore, the class assigned by
these decision rules to an input vector is not uniquely determined. We therefore
briefly discuss the concept of an extension of a discrete data set or decision table
in the next section.

3 Monotone Discrete Functions

The theory of monotone discrete functions as a tool for data-analysis has been
developed in [2]. Here we only briefly review some concepts that are crucial for

296 Jan C. Bioch and Viara Popova

our approach. A discrete function of n variables is a function of the form:
f:XixXox...xX, =Y,

where X = X7 X Xo X ...x X, and Y are finite sets. Without loss of generality
we may assume: X; = {0,1,...,n;} and Y ={0,1,...,m}. Let 2,y € X be two
discrete vectors. Least upper bounds and greatest lower bounds will be defined
as follows:

x Vy=wv, where v; = max{z;,y;} (7)

x Ay =w, where w; = min{z;,y;} . (8)

Furthermore, if f and g are two discrete functions then we define:

(f Vv g)(x) = max{f(z),g(x)} (9)
(f N g)(x) = min{f(z),g(z)} . (10)
(Quasi) complementation for X is defined as: ¥ = (1,72, ...,Ty), where T; =

n; — x;. Similarly, the complement of j € Y is defined as j = m — j. The
complement of a discrete function f is defined by: f(x) = f(z). The dual of a
discrete function f is defined as: f¥(x) = f(Z). A discrete function f is called
positive (monotone non-decreasing) if x <y implies f(x) < f(y).

3.1 Representations

Normal Forms Discrete variables are defined as:

xip = if ; > p then m else 0, where 1 <p <n,;, i€ (n]={1,...,n} . (11)

Thus: Tijpy1 = if z; < p then m else 0. Furthermore, we define x4,,41 = 0
and Tjn,+1 = m. Cubic functions are defined as:

Cy,j = j-xl'ul T2vgy ** * Tnv, - (12)

Notation: ¢, j(z) = if x > v then j else 0, j € (m].
Similarly, we define anti-cubic functions by:

Qi = (Y Tlwy+1 V Towo+1 """ V Tnw,+1 - (13)

Notation: a, () = if # < w then i else m, ¢ € [m) = {0,...,m — 1}. Note,
that j.x;, denotes the conjunction j A x;,, where j € Y is a constant, and ;,x 4
denotes 3, Axiq. A cubic function ¢, ; is called a prime implicant of f if ¢, ; < f
and ¢, ; is maximal w.r.t. this property. The DNF of f:

f=View lve je ml, (149)

is a unique representation of f as a disjunction of all its prime implicants (v is
a minimal vector of class d > j).

Rough Sets and Ordinal Classification 297

d
ip r
The dual of the positive function f =V, ;j.cy ; equals fi= NojiVags

If z;, is a discrete variable and j € Y a constant then xf, = z541 and jt=7.

Example 3. Let f be the function defined by table 6 and let e.g. x1; denote
the variable: if @ > 1 then 2 else 0, etc. Then f = 2.(z11221 V Z22) V L2y,
and fd = 2.5612%21 \ 1.1’22.

Decision Lists

In [2] we have shown that monotone functions can effectively be represented by
decision lists of which the minlist and the maxlist representations are the most
important ones. We introduce these lists here only by example. The minlist
representation of the functions f and f? of example 2 are respectively:

f(z) = ifx >11,02 then 2 else if 2 > 10 then 1 else 0, and

fz) = if 2 > 21 then 2 else if z > 02 then 1 else 0.
The meaning of the minlist of f is given by:

if(a>1Ab>1)Vb=2then 2 elseif a>1 then 1 else 0.
The maxlist of f is obtained from the minlist of f¢ by complementing the mini-
mal vectors as well as the function values, and by reversing the inequalities. The
maxlist representation of f is therefore:

f(z) = if 2 <01 then 0 elseif x <20 then 1 else 2, or equivalently:

ifa=0Ab<1then 0 elseif b=0 then 1 else 2.
The two representations are equivalent to the following table that contains re-
spectively the minimal and maximal vectors for each decision class of f. Each
representation can be derived from the other by dualization.

Table 10. Two representations of f

minvectors | maxvectors class
11, 02 2
10 20 1
01 0

3.2 Extensions of Monotone Datasets

A partially defined discrete function (pdDf) is a function: f : D — Y, where D C
X. We assume that a pdDf f is given by a decision table such as e.g. table 1.
Although pdDfs are often used in practical applications, the theory of pdDfs is
only developed in the case of pdBfs (partially defined Boolean functions). Here
we discuss monotone pdDfs, i.e. functions that are monotone on D. If the func-
tion f: X +— Y, agrees with f on D: f(l) = f(x), x € D, then f is called an
extension of the pdDf f. The collection of all extensions forms a lattice: for, if f;
and fy are extensions of the pdDf f, then f; A fo and f; V fo are also extensions

298 Jan C. Bioch and Viara Popova

of f. The same holds for the set of all monotone extensions. The lattice of all
monotone extensions of a pdDf f will be denoted here by £(f). It is easy to see
that £(f) is universally bounded: it has a greatest and a smallest element. The
maxlist of the maximal element called the mazimal monotone extension can be
directly obtained from the decision table.

Definition 1 Let f be a monotone pdDf. Then the functions fmin and fmax are
defined as follows:

_ [max{f(y): yeDnNlz} ifze 1D

Fmin(x) = {0 otherwise (15)
[min{f(y): ye DNz} ifze |D

Frmax(7) = {m otherwise . (16)

Lemma 1 Let f be a monotone pdDf. Then
a/) fIl/’\lin7 fmax € (‘:(f) R
b) erg(f) : fmingfgfrnax .

Since E(f) is a distributive lattice, the minimal and maximal monotone ex-
tension of f can also be described by the following expressions:

foax =\{ 1 f € &)y and froin= N{F | f € EH}. (17)

Notation: Let T;(f) := {x € D : f(z) = j}. A minimal vector v of class j is a
vector such that f(v) = j and no vector strictly smaller than v is also in Tj(f).
Similarly, a maximal vector w is a vector maximal in T;(f), where j = f(w).
The sets of minimal and maximal vectors of class j are denoted by minT;(f)
and mazT;(f) respectively.

According to the previous lemma fi,in and fiax are respectively the minimal
and maximal monotone extension of f. Decision lists of these extensions can be
directly constructed from f as follows. Let D; := DNT}(f), then minT}(fmin) =
minD; and maxTj(fmax) = maxD;.

Example 4. Consider the pdDf given by table 1, then its maximal extension is:

f(z) = if 2 <010 then 0
else if x < 100 then 1
else 2 .

As described in the last subsection, from this maxlist representation we can de-
duce directly the minlist representation of the dual of f and finally by dualization
we find that f is:

f = 2.(’1,’12 V 1121 V I22 V IL’31) V 1.21711 . (18)

However, f can be viewed as a representation of table 4! This suggests a close re-
lationship between minimal monotone decision rules and the maximal monotone
extension fy,q.. This relationship is discussed in the next section.The relation-
ship with the methodology LAD (Logical Analysis of Data) is briefly discussed
in subsection 3.5.

Rough Sets and Ordinal Classification 299

3.3 The relationship between monotone decision rules and f 02

We first redefine the concept of a monotone reduct in terms of discrete functions.
Let X = X3 x X2 X ... x X, be the input space, and let A =[1,...,n] denote
the set of attributes. Then for U C A, z € X we define the set U.x respectively
the vector z.U by:

Ux={ieU:x >0} (19)
and

won= {3 858 o

Furthermore, the characteristic set U of z is defined by U = A.x.

Definition 2 Suppose f : D — Y is a monotone pdDf, w € D and f(w) = j.
Then V C A is a monotone w-reduct iff Ve € D : (f(z) <j= w.U L z.U).

Note, that in this definition the condition w.U £ z.U is equivalent to w.U < =x.
The following lemma is a direct consequence of this definition.

Lemma 2 Suppose f is a monotone pdDf, w € T;(f). Then V C A is a mono-
tone w-reduct < Va(f(x) < j = Ji € V such that w; > x;) .

Corollary 1 V is a monotone w-reduct iff V.w is a monotone w-reduct. There-
fore, w.l.o.g. we may assume that V' is a subset of the characteristic set W of w:
VoWw.

Monotone Boolean functions

We first consider the case that the dataset is Boolean: so the objects are described
by condition and decision attributes taking one of two possible values {0, 1}. The
dataset represents a partially defined Boolean function (pdBf) f: D — {0,1}
where D C {0,1}"™. As we have only two classes, we define the set of true vectors
of f by T(f) :=Ti(f) and the set of false vectors of f by F(f) := To(f) .

Notation: In the Boolean case we will make no distinction between a set V and
its characteristic vector v.

Lemma 3 Let f: D — {0,1} be a monotone pdBf, w € D, w € T(f). Suppose
v <w. Then v is a w-reduct < v € T(fmaz) -

Proof: Since v < w, we have

vis a w-reduct S Va(r € DNF(f) = v L x) < v €T (fmax) -

Theorem 1 Suppose f : D — {0,1} is a monotone pdBf, w € D, w € T(f).
Then, for v < w, v € minT (fimaz) < v is a minimal monotone w-reduct.

300 Jan C. Bioch and Viara Popova

Proof: Let v € minT (fmaz) and v < w for some w € D. Then v is a monotone w-
reduct. Suppose Ju < v and u is a monotone w-reduct. Then by definition 2 we
have: v € T(fmaz), which contradicts the assumption that v € minT(frmaz)-

Conversely, let v be a minimal monotone w-reduct. Then by lemma 3 we have:
v € T(frmaz)- Suppose Ju < v : u € T(fimaz). However, v <w = u <w = U is
a monotone w-reduct, which contradicts the assumption that v is a minimal w-
reduct.

The results imply that the irredundant (monotone) decision rules that cor-
respond to the object reducts are just the prime implicants of the maximal
extension.

Corollary 2 The decision rules obtained in rough set theory can be obtained by
the following procedure: a) find the maximal vectors of class 1 (positive examples)
b) determine the minimal vectors of the dual of the maximal extension and c)
compute the minimal vectors of this extension by dualization. The complexity of
this procedure is the same as for the dualization problem.

Although the above corollary is formulated for monotone Boolean functions,
results in [9] indicate that a similar statement holds for Boolean functions in
general.

Monotone discrete functions

Lemma 4 Suppose f is a monotone pdDf, w € Tj(f) and v < w. If v €
T;(fmaz) then the characteristic set V' of v is a monotone w-reduct.

Proof: f,q.(v) = j implies Va(f(z) < j = v £ x). Since w > v we therefore
have Vz(f(z) < j = 3i € V such that w; > v; > ;) .

Remark: Even if in lemma 4 the vector v is minimal: v € minT}(fimaee), then
still V' = A.v is not necessarily a minimal monotone w-reduct.

Theorem 2 Suppose f is a monotone pdDf and w € T;(f) . Then V C A is a
monotone w-reduct < fma(w.V) =7 .

Proof: If V is a monotone w-reduct, then by definition Vz(f(z) < j = w.V £ z).
Since w.V < w and f(w) = j we therefore have fpo(w.V) =7 .

Conversely, let fia(w.V) = 4, V. C A. Then, since w.V < w and the
characteristic set of w.V is equal to V, lemma 4 implies that V is a monotone w-
reduct.

Theorem 3 Let f be a monotone pdDf and w € T;(f). If V. C A is a minimal
monotone w-reduct, then Fu € minT;(fmas) such that V= A .

Proof: Since V' is a monotone w-reduct, theorem 2 implies that f,q.(w.V) = j.
Therefore, Ju € minT}(fmaz) such that v < w.V. Since A.u CV and A.u is a
monotone w-reduct (by lemma 4), the minimality of V implies Au =V .

Rough Sets and Ordinal Classification 301

Theorem 3 implies that the minimal decision rules obtained by monotone w-
reducts are not shorter than the minimal vectors (prime implicants) of frqz-
This suggests that we can optimize a minimal decision rule by minimizing the
attribute values to the attribute values of a minimal vector of f,,... For example,
if V is a minimal monotone w-reduct and v € minT}(fmaz) such that u < w.V
then the rule: ’if x; > w; then j’, where i € V can be improved by using the
rule: 'if x; > u; then j’, where i € V. Since u; < w;, i € V, the second rule is
applicable to a larger part of the input space X.

The results so far indicate the close relationship between minimal monotone
decision rules obtained by the rough sets approach and by the approach us-
ing fimaez- To complete the picture we make the following observations:

Observation 1: The minimal vector u (theorem 3) is not unique.

Observation 2: Lemma 4 implies that the length of a decision rule induced by
a minimal vector v < w, v € MinT;(fimaer) is not necessarily smaller than that
of a rule induced by a minimal w-reduct. This means that there may exist an
r € X that is covered by the rule induced by v but not by the decision rules
induced by the minimal reducts of a vector w € D.

Observation 3: There may be minimal vectors of f,4, such that Yw € D
v £ w. In this case if x > v then fp,4.(x) = m but is not covered by a minimal
decision rule induced by a minimal reduct.

In the next two subsections we briefly compare the rough set approach and the
discrete function approach with two other methods.

3.4 Monotone Decision Trees

Ordinal classification using decision trees is discussed in [1,5,18]. A decision tree
is called monotone if it represents a monotone function. A number of algorithms
are available for generating and testing the monotonicity of the tree [5,18]. Here
we demonstrate the idea with an example.

Example 5. A monotone decision tree corresponding to the pdDf given by table
1 and example 3 is represented in figure 1.

It can be seen that the tree contains information both on the corresponding
extension and its complement (or equivalently its dual). Therefore the decision
list representation tends to be more compact since we only need the information
about the extension - the dual can always be derived if necessary.

3.5 Rough Sets and Logical Analysis of Data

The Logical Analysis of Data methodology (LAD) was presented in [9] and
further developed in [8,6,7]. LAD is designed for the discovery of structural

302 Jan C. Bioch and Viara Popova

Fig. 1. Monotone decision tree representation of f

information in datasets. Originally it was developed for the analysis of Boolean
datasets using partially defined Boolean functions. An extension of LAD for the
analysis of numerical data is possible through the process of binarization. The
building concepts are the supporting set, the pattern and the theory.

A set of variables (attributes) is called a supporting set for a partially defined
Boolean function f if f has an extension depending only on these variables. A
pattern is a conjunction of literals such that it is 0 for every negative example
and 1 for at least one positive example. A subset of the set of patterns is used to
form a theory - a disjunction of patterns that is consistent with all the available
data and can predict the outcome of any new example. The theory is therefore
an extension of the partially defined Boolean function.

Our research suggests that the LAD and the RS theories are similar in several
aspects (for example, the supporting set corresponds to the reduct in the binary
case and a pattern with the induced decision rule). The exact connections will
be a subject of future research.

4 Experiments

4.1 The Bankruptcy Dataset

The dataset used in the experiments is discussed in [12]. The sample consists
of 39 objects denoted by F'1 to F39 - firms that are described by 12 financial
parameters (see [4]). To each company a decision value is assigned - the expert
evaluation of its category of risk for the year 1988. The condition attributes
denoted by Al to A12 take integer values from 0 to 4.

The decision attribute is denoted by d and takes integer values in the range 0
to 2 where: 0 means unacceptable, 1 means uncertainty and 2 means acceptable.

The data was first analyzed for monotonicity. The problem is obviously mono-
tone (if one company outperforms another on all condition attributes then it

Rough Sets and Ordinal Classification 303

should not have a lower value of the decision attribute). Nevertheless, one noisy
example was discovered, namely F'24. It was removed from the dataset and was
not considered further.

4.2 Reducts and Decision Rules

The minimal reducts have been computed using our program ’the Dualizer’.
There are 25 minimal general reducts (minimum length 3) and 15 monotone
reducts (minimum length 4), see [4]. We have also compared the heuristics to
approximate a minimum reduct: the best reduct method (for general reducts)
and the Johnson strategy (for general and monotone reducts), see [4].

Table 11 shows the two sets of decision rules obtained by computing the
object (value)- reducts for the monotone reduct (A1, A3, A7, A9). Both sets of
rules have minimal covers, of which the ones with minimum length are shown
in table 12. A minimum cover can be transformed into an extension if the rules
are considered as minimal/maximal vectors in a decision list representation. In
this sense the minimum cover of the first set of rules can be described by the
following function:

f = 2.:1373:1393 V 1((1333 \Y I73 \Y T11X93 \Y 1133211372) . (21)

The maximal extension corresponding to the monotone reduct (A1, A3, A7, A9)
is represented in table 13.

Table 11. The rules for (A1, A3, A7, A9)

class d > 2 class d > 1
Al>3 Al >3

AT >4 A3 >3

A9 >4 A7 >3
Al>2ANA7T>3 A9 > 4
A3>2ANAT>3 Al >1AA3>2
A7T>3NA9 >3 Al >1NA9>3

A3 > 2N AT > 2
A3>2AAT>1AA9> 3

class d <0 class d <1
A7T<0 AT <2
A9 <1 A9 <2

AL<0AA3<0

AI<OANA3<2AAT<1
AI<OANA3<1IAAT<?2
A1<OANA3<2AA9<2
A3<O0AA9<2

A3<1IANAT<2AA9<2
A3<2ANAT<1AA9<2

The function f or equivalently its minlist we have found consists of only 5
decision rules (prime implicants). They cover the whole input space. Moreover,

304 Jan C. Bioch and Viara Popova

Table 12. The minimum covers for (A1, A3, A7, A9)

class d > 2 class d > 1
AT>3NA9 >3 A3 >3
AT>3

Al>1NA9>3
A3>2ANAT>2
class d <0 class d <1
AI<OANAB<2ANAT<I|AT<2
AI<OANA3<IAAT<2|A9<2
A3<1IAAT<2AA9<2

Table 13. The maximal extension for (A1, A3, A7, A9)

class d = 2 class d =1

Al >3 A3 >3

A3 >4 AT>3

AT>4 Al >1NA3>2
A9 >4 Al >1NA9>3

AL>2NAT>3| A3 > 2N AT > 2
A3>2ANAT>3|A3>2AA7T>1AA9> 3
AT>3ANA9>3

each possible vector is classified as d = 0,1 or 2 and not as d > 1 or d > 2 like
in [12]. The latter paper uses both the formats shown in table 11 to describe
a minimum cover, resulting in a system of 11 rules. Using both formats at the
same time can result in much (possibly exponential) larger sets of rules. Another
difference between our approach and [12] is our use of the monotone discernibility
matrix. Therefore, we can compute all the monotone reducts and not only a
generalization of the 'best reduct’ as in [12].

5 Discussion and Further Research

Our approach using the concepts of monotone discernibility matrix/function and
monotone (object) reduct and using the theory of monotone discrete functions
has a number of advantages summarized in the discussion on the experiment with
the bankruptcy dataset in section 4. Furthermore, it appears that there is close
relationship between the decision rules obtained using the rough set approach
and the prime implicants of the maximal extension. Although this has been
shown for the monotone case this also holds at least for non-monotone Boolean
datasets. We have discussed how to compute this extension by using dualization.
The relationship with two other possible approaches for ordinal classification is
discussed in subsections 3.4 and 3.5. We also computed monotone decision trees
[5,18] for the datasets discussed in this paper. It appears that monotone decision
trees are larger because they contain the information of both an extension and
its dual! The generalization of the discrete function approach to non-monotone
datasets and the comparison with the theory of rough sets is a topic of further

Rough Sets and Ordinal Classification 305

research. Finally, the sometimes striking similarity we have found between Rough
Set Theory and Logical Analysis of Data remains an interesting research topic.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Ben-David, A.: Monotonicity Maintenance in Information-Theoretic Machine

Learning Algorithms. Machine Learning 19 (1995) 29-43 291, 301

. Bioch, J. C.: Dualization, Decision Lists and Identification of Monotone Discrete

Functions. Annals of Mathematics and Artificial Intelligence 24 (1998) 69-91 291,
293, 295, 297

. Bioch, J. C., Ibaraki, T.: Complexity of Identification and Dualization of Positive

Boolean Functions. Information and Computation 123 (1995) 50-63 293

. Bioch, J. C., Popova, V.. The Rough Set and Ordinal Classification: The

Bankruptcy Problem. Technical Report Dept. of Computer Science, eur-few-cs-
0600, Erasmus University Rotterdam (2000) 294, 302, 303

. Bioch, J. C., Potharst, R.: Decision Trees for Monotone Classification. in: K. van

Marcke and W. Daelmans (eds), Proceedings of the Dutch Artificial Conference on
Artificial Intelligence (NAIC’97), Antwerpen (1997) 361-369 291, 301, 304

. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A.: Logical Analysis of Numeri-

cal Data. RUTCOR Research Report RRR 04-97, RUTCOR, Rutgers University
(1997) 301

. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Logical Analysis of Numerical

Data. Mathematical Programming 79 (1997) 165-190 301

. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.:An

Implementation of Logical Analysis of Data. RUTCOR Research Report RRR 22-
96, RUTCOR, Rutgers University (1996) 301

. Crama, Y., Hammer, P. L., Ibaraki, T.: Cause-Effect Relationships and Partially

Defined Boolean Functions. Annals of Operations Research 16 (1988) 299-326 300,
301

Eiter, T., Gottlob, G.: Identifying the Minimal Transversals of a Hypergraph and
Related Problems. STAM Journal on Computing 24 (1995) 1278-1304 293
Fredman, M., Khachiyan, L.: On the Complexity of Dualization of Monotone Dis-
junctive Normal Forms. Journal of Algorithms 21 (1996) 618-628 293

Greco, S., Matarazzo, B., Slowinski, R.: A New Rough Set Approach to Evaluation
of Bankruptcy Risk. in: C. Zopounidis (ed.), Operational Tools in the Management
of Financial Risks, Kluwer, Dordrecht (1998) 121-136 291, 302, 304

Hu, X., Cercone, N.: Learning in Relational Databases: a Rough Set Approach.
Computational Intelligence 11 (1995) 323-338 293

Johnson, D. S.: Approximation Algorithms for Combinatorial Problems. Journal
of Computer and System Sciences 9 (1974) 256-278 293

Komorowski, J., Polkowski, L., Skowron, A.: Rough Sets: A Tutorial.
http://www.esslli.let.uu.nl/Courses/skowron/skowron.ps 293, 294

Makino, K., Suda, T., Yano, K., Ibaraki, T.: Data Analysis by Positive Decision
Trees. In: Proceedings International symposium on cooperative database systems
for advanced applications (CODAS), Kyoto (1996) 282-289 291

Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers (1991) 294

Potharst, R., Bioch, J. C.: Decision Trees for Ordinal Classification. Intelligent
Data Analysis 4 (2000) 1-15 291, 301, 304

A note on the generalization performance of
kernel classifiers with margin.

Theodoros Evgeniou and Massimiliano Pontil

Center for Biological and Computational Learning, MIT
45 Carleton Street E25-201, Cambridge, MA 02142, USA
{theos,pontil}@ai.mit.edu

Abstract. We present distribution independent bounds on the general-
ization misclassification performance of a family of kernel classifiers with
margin. Support Vector Machine classifiers (SVM) stem out of this class
of machines. The bounds are derived through computations of the V,
dimension of a family of loss functions where the SVM one belongs to.
Bounds that use functions of margin distributions (i.e. functions of the
slack variables of SVM) are derived.

1 Introduction

Deriving bounds on the generalization performance of kernel classifiers has been
an important theoretical topic of research in recent years [4, 8-10, 12]. We present
new bounds on the generalization performance of a family of kernel classifiers
with margin, from which Support Vector Machines (SVM) can be derived. The
bounds use the V,, dimension of a class of loss functions, where the SVM one be-
longs to, and functions of the margin distribution of the machines (i.e. functions
of the slack variables of SVM - see below).
We consider classification machines of the form:

min Y77, V(yi, f(xi))
subject to If1% < A? (1)

where we use the following notation:

— Dy ={(x1,y1) -+, (X, Ym) }», with (x;,9;) € R" x {—1, 1} sampled accord-
ing to an unknown probability distribution P(x,y), is the training set.

— V(y, f(x)) is the loss function measuring the distance (error) between f(x)
and y.

— f is a function in a Reproducing Kernel Hilbert Space (RKHS) H defined
by kernel K, with ||f||% being the norm of f in H [11,2]. We also call f a
hyperplane, since it is such in the feature space induced by the kernel K [11,
10).

— A is a constant.

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 306-315, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

Generalization Performance of Kernel Classifiers with Margin 307

Classification of a new test point x is always done by simply considering the sign
of f(x).

Machines of this form have been motivated in the framework of statistical
learning theory. We refer the reader to [10,6, 3] for more details. In this paper
we study the generalization performance of these machines for choices of the
loss function V' that are relevant for classification. In particular we consider the
following loss functions:

— Misclassification loss function:

V(y, [(x)) = V" (yf(x)) = 0(—yf(x)) (2)
— Hard margin loss function:
V(y, f(x) = V" (yf(x)) = 0(1 — yf(x)) 3)
— Soft margin loss function:
V(y, f(x) = V" (yf(x) = 1 - yf(x)l+, (4)

where 6 is the Heavyside function and |z|; = z, if x is positive and zero
otherwise. Loss functions (3) and (4) are “margin” ones because the only case

they do not penalize a point (x,y) is if yf(x) > 1. For a given f, these are

the points that are correctly classified and have distance LGl > f1\|2 from the

Il £11?

surface f(x) = 0 (hyperplane in the feature space induced by the kernel K [10]).
For a point (x,y), quantity yﬁcﬁ) is its margin, and the probability of having

yI{JE}H() > § is called the margin distribution of hypothesis f. For SVM, quantity

|1 — y; f(xi)|+ is known as the slack variable corresponding to training point
(Xi,Yi) [10]'

We will also consider the following family of margin loss functions (nonlinear
soft margin loss functions):

Viy, [(x) = V7 (yf (%) = [1 = yf(x)[F- (5)

Loss functions (3) and (4) correspond to the choice of o = 0,1 respectively.
In figure 1 we plot some of the possible loss functions for different choices of the
parameter o.

To study the statistical properties of machines (1) we use some well known results
that we now briefly present. First we define some more notation, and then state
the results from the literature that we will use in the next section.
We use the following notation:
— RY ()=, V(y;, f(x;)) is the empirical error made by f on the train-

emp
ing set D,,, using V as the loss function.

308 Theodoros Evgeniou and Massimiliano Pontil

3

25 | s : ,

I
L
4
2

Fig. 1. Hard margin loss (line with diamond-shaped points), soft margin loss (solid
line), nonlinear soft margin with o = 2 (line with crosses), and o = % (dotted line)

— RY(f) = fR"x{—l,l} V(y, f(x)) P(x,y) dx dy is the expected error of f
using V' as the loss function.

— Given a hypothesis space of functions F (i.e. F = {f € H : ||f]|* < A%}), we
note by h,‘y/f the V, dimension of the loss function V(y, f(x)) in F, which is
defined as follows [1]:

Definition 1. Let A < V(y, f(x)) < B, f € F, with A and B < co. The V-
dimension of V in F (of the set of functions {V (y, f(x)) | f € F}) is defined as
the the mazimum number h of vectors (x1,y1) ..., (Xn,yn) that can be separated
into two classes in all 2" possible ways using rules:

class 1 if: V(ys, f(x:)) = 5+
class -1 if: V(y, f(x:)) < s —

or f € F and some s > 0. If, for any number m, it s possible to find m points
F and >0. b it bl d)
X1,Y1) -y (Xm, Ym) that can be separated in all the possible ways, we wt
h b d in all the 2™ bl 11
say that the V. -dimension of V in F is infinite.

If instead of a fixed s for all points we use a different s; for each (x;,y;), we
get what is called the fat-shattering dimension fat, [1]. Notice that definition
(1) includes the special case in which we directly measure the V, dimension of
the space of functions F', i.e. V(y, f(x)) = f(x). We will need such a quantity
in theorem 2.2 below.

Using the V,, dimension we can study the statistical properties of machines of
the form (1) based on a standard theorem that characterizes the generalization
performance of these machines.

Generalization Performance of Kernel Classifiers with Margin 309

Theorem 1 (Alon et al., 1997). Let A<V (y, f(x)) < B, f € F, F be a set
of bounded functions. For any € > 0, for all m > 6% we have that if hly/f is the
V., dimension of V in F for v = ae (o > 55), hly/f finite, then:

Pr{sup‘Rme(f)—RV(fﬂ >e} §g(e,m,h¥f), (6)

fer

where G is an increasing function of h,‘{f and a decreasing function of € and m,
with G — 0 as m — oo.

In [1] the fat-shattering dimension was used, but a close relation between
that and the V, dimension [1] make the two equivalent for our purpose!. Closed
forms of G can be derived (see for example [1]) but we do not present them here
for simplicity of notation. Notice that since we are interested in classification,
we only consider € < 1, so we will only discuss the case v < 1 (since v is about
+e).

In “standard” statistical learning theory the VC dimension is used instead
of the V, one [10]. However, for the type of machines we are interested in the
VC dimension turns out not to be appropriate: it is not influenced by the choice
of the hypothesis space F through the choice of A, and in the case that F is an
infinite dimensional RKHS, the VC-dimension of the loss functions we consider
turns out to be infinite (see for example [5]). Instead, scale-sensitive dimensions
(such as the V,, or fat-shattering one [1]) have been used in the literature, as we
will discuss in the last section.

2 Main results

We study the loss functions (2 - 5). For classification machines the quantity
we are interested in is the expected misclassification error of the solution f of
problem 1. With some abuse of notation we note this with R™®¢. Similarly we
will note with R"™, R*™ and R’ the expected risks using loss functions (3),
(4) and (5), respectively, and with R’glnnp, Rény, and RZ, . the corresponding
empirical errors. We will not consider machines of type (1) with V™¢ as the loss
function, for a clear reason: the solution of the optimization problem:

min 3700, 0(—yif(x:))
subject to IfII% < A2

is independent of A, since for any solution f we can always rescale f and have
the same cost Y ;- O(—yi f(x;))-

For machines of type (1) that use V™ or V7 as the loss function, we prove
the following:

" In [1] it is shown that V5 < fat, < £V3.

310 Theodoros Evgeniou and Massimiliano Pontil

Theorem 2. The V. dimension h for |1 —yf(x)|7 in hypothesis spaces Fa =
{f € HIIfII% < A%} (of the set of functions |1 —yf(x)|T | f € Fa}) and
y € {—1,1}, is finite for V 0 < ~y. If D is the dimensionality of the RKHS H, R?
is the radius of the smallest sphere centered at the origin containing the data x
in the RKHS, and B > 1 is an upper bound on the values of the loss function,
then h is upper bounded by:

— O(min(D, Rzﬁz)) for o <1
’yﬂ'

o1
— O(min(D, (UB”W#)) foro>1

Proof
The proof is based on the following theorem [7] (proved for the fat-shattering
dimension, but as mentioned above, we use it for the “equivalent” V, one).

Theorem 2.2 [Gurvits, 1997] The V., dimension h of the set of functions®
Fa ={f € H||flI3% < A%} is finite for ¥ v > 0. If D is the dimensionality of

the RKHS, then h < O(min(D, Ri‘f)), where R? is the radius of the smallest
sphere in the RKHS centered at the origin here the data belong to.

Let 2N be the largest number of points {(x1,41),- .-, (Xan, y2n)} that can
be shattered using the rules:

class 1if |1 —y;f(x;) 7 (7)
class — 1if |1 — y; f(x:) v
for some s with 0 < v < s. After some simple algebra these rules can be decom-
posed as:

class 1if f(x;) —1< —(s47)7 (fory; =1)
or f(xl)+1>(s+7)§ (for y; = —1) (8)

class —1if f(x;) —1> —(s—)§ (fory; =1)

or f(x)+1<(s—) (for y; = —1)

From the 2N points at least IV are either all class -1, or all class 1. Consider the
first case (the other case is exactly the same), and for simplicity of notation let’s
assume the first N points are class -1. Since we can shatter the 2N points, we
can also shatter the first N points. Substituting y; with 1, we get that we can
shatter the N points {xy,...,xx} using rules:

class 1if f(x;))+1>(s+7)

class —1if f(x)+1<(—)7)

Notice that the function f(x;) + 1 has RKHS norm bounded by A? plus a
constant C' (equal to the inverse of the eigenvalue corresponding to the constant

2 As mentioned above, in this case we can consider V(y, f(x)) = f(x).

Generalization Performance of Kernel Classifiers with Margin 311

basis function in the RKHS - if the RKHS does not include the constant func-
tions, we can define a new RKHS with the constant and use the new RKHS
norm). Furthermore there is a “margin” between (s +)7 and (s —)7 which
we can lower bound as follows.

For ¢ < 1, assuming % is an integer (if not, we can take the closest lower
integer),

(+7% —(s=?%) = (10)

N = N
|~
|
-

19 1 1

s+ == D (s+1N7 " Fs—nF | 27 =77 (11)
k=0

For o > 1, o integer (if not, we can take the closest upper integer) we have that:

g

27 = (+97) = (=7 = (12)

-

o—1
=((s+2)7 = (s =7)7) <<s+v>%>”—1—’“<<s—v>%>k><

-

k
<((s+7)7 = (s—7)7)oBT

from which we obtain:

al-

1 (1

= ((s+7 —8—7")2 = 13

5 (6 —-%) > — (13)
Therefore N cannot be larger than the V, dimension of the set of functions

with RKHS norm < A2 + C and margin at least y= for o < 1 (from eq. (11))

and —L= for ¢ > 1 (from eq. (13)). Using theorem 2.2, and ignoring constant

oB o
factors (also ones because of C'), the theorem is proved. O

In figure 2 we plot the V, dimension for R?A? = 1, B = 1, v = 0.9, and
D infinite. Notice that as ¢ — 0, the dimension goes to infinity. For ¢ = 0
the V., dimension becomes the same as the VC dimension of hyperplanes, which
is infinite in this case. For o increasing above 1, the dimension also increases:
intuitively the margin + becomes smaller relatively to the values of the loss
function.

Using theorems 2 and 1 we can bound the expected error of the solution f
of machines (1):

Pri{|R%.,(f) = RV (f)| > €} < G(e,m, hy), (14)

where V' is V5™ or V?. To get a bound on the expected misclassification error
R™3¢(f) we use the following simple observation:

Vime(y, f(x)) < V7(y, f(x)) for Vo, (15)

312 Theodoros Evgeniou and Massimiliano Pontil

10

0 0.5 1 1.5 2 25 3
Sigma

Fig. 2. Plot of the V, dimension as a function of ¢ for v = .9

So we can bound the expected misclassification error of the solution of machine
(1) under V*™ and V7 using the V, dimension of these loss functions and the
empirical error of f measured using again these loss functions. In particular we

get that for Vo, with probability 1 — G(e, m, h},/;):
R™(f) < Rep(f) + € (16)

where € and vy are related as stated in theorem 1.

Unfortunately we cannot use theorems 2 and 1 for the V™ loss function.
For this loss function, since it is a binary-valued function, the V, dimension is
the same as the VC-dimension, which, as mentioned above, is not appropriate to
use in our case. Notice, however, that for o — 0, V7 approaches V™ pointwise
(from theorem 2 the V, dimension also increases towards infinity). Regarding
the empirical error, this implies that R — R"™. so, theoretically, we can still
bound the misclassification error of the solution of machines with V*™ using:

R™(f) < Rep, (f) + e + max(R,,,, (f) — Reyy (), 0), (17)

where RY,,,(f) is measured using V7 for some 0. Notice that changing o we get
a family of bounds on the expected misclassification error. Finally, we remark
that it could be interesting to extend theorem 2 to loss functions of the form

01 —yf(x))h(1 —yf(x)), with h any continuous monotone function.

3 Discussion

In recent years there has been significant work on bounding the generalization
performance of classifiers using scale-sensitive dimensions of real-valued func-

Generalization Performance of Kernel Classifiers with Margin 313

tions out of which indicator functions can be generated through thresholding
(see [4,9,8],[3] and references therein). This is unlike the “standard” statisti-
cal learning theory approach where classification is typically studied using the
theory of indicator functions (binary valued functions) and their VC-dimension
[10]. The work presented in this paper is similar in spirit with that of [3], but
significantly different as we now briefly discuss.

In [3] a theory was developed to justify machines with “margin”. The idea was
that a “better” bound on the generalization error of a classifier can be derived by
excluding training examples on which the hypothesis found takes a value close
to zero (as mentioned above, classification is performed after thresholding a real
valued function). Instead of measuring the empirical misclassification error, as
suggested by the standard statistical learning theory, what was used was the
number of misclassified training points plus the number of training points on
which the hypothesis takes a value close to zero. Only points classified correctly
with some “margin” are considered correct. In [3] a different notation was used:
the parameter A in equation (1) was fixed to 1, while a margin ¢ was introduced
inside the hard margin loss, i.e (1) — yf(z)). Notice that the two notations are
equivalent: given a value A in our notation we have 1) = A~! in the notation of
[3]. Below we adapt the results in [3] to the setup of this paper, that is, we set
1 =1 and let A vary. Two main theorems were proven in [3].

Theorem 3 (Bartlett, 1998). For a given A, with probability 1 — §, every
function f with || f||3 < A2 has expected misclassification error R™¢(f) bounded
as:

R™(f) < RETL(f) + \/ %(dln(?Aem/d) log, (578m) + In(4/5), (18)

where d is the fat-shattering dimension fat., of the hypothesis space {f : || f||% <
A%} for v = 1.

Unlike in this paper, in [3] this theorem was proved without using theorem 1.
Although practically both bound (18) and the bounds derived above are not
tight and therefore not practical, bound (18) seems easier to use than the ones
presented in this paper.

It is important to notice that, like bounds (14), (16), and (17), theorem 3
holds for a fixed A [3]. In [3] theorem 3 was extended to the case where the
parameter A (or ¢ in the notations of [3]) is not fixed, which means that the
bound holds for all functions in the RKHS. In particular the following theorem
gives a bound on the expected misclassification error of a machine that holds
uniformly over all functions:

Theorem 4 (Bartlett, 1998). For any f with ||f||x < oo, with probability
1 — 0, the misclassification error R™*(f) of f is bounded as:

R™(f) < R, (f) + \/%(dln(?)‘lem/d) log, (578m) + In(8] f1|/9), (19)

where d 1is the fat-shattering dimension fat., of the hypothesis space consisting

of all functions in the RKHS with norm < || f||%, and with v = 32‘1“” .

314 Theodoros Evgeniou and Massimiliano Pontil

Notice that the only differences between (18) and (19) are the In(8| f||/9) instead
of In(4/48), and that v = m instead of v = 5.

So far we studied machines of the form (1), where A is fixed a priori. In
practice learning machines used, like SVM, do not have A fixed a priori. For
example in the case of SVM the problem is formulated [10] as minimizing:

min 37 |1 —yif (xi)l4 + A% (20)

where A is known as the regularization parameter. In the case of machines (20)
we do not know the norm of the solution || f||% before actually solving the op-
timization problem, so it is not clear what the “effective” A is. Since we do not
have a fixed upper bound on the norm || f||% a priori, we cannot use the bounds
of section 2 or theorem 3 for machines of the form (20). Instead, we need to use
bounds that hold uniformly for all A (or v if we follow the setup of [3]), for
example the bound of theorem 4, so that the bound also holds for the solution
of (20) we find. In fact theorem 4 has been used directly to get bounds on the
performance of SVM [4]. A straightforward applications of the methods used to
extend theorem 3 to 4 can also be used to extend the bounds of section 2 to the
case where A is not fixed (and therefore hold for all f with || f|| < o0), and we
leave this as an exercise.

There is another way to see the similarity between machines (1) and (20).
Notice that the formulation (1) the regularization parameter A of (20) can be seen
as the Lagrange multiplier used to solve the constrained optimization problem
(1). That is, problem (1) is equivalent to:

maxaming Y V(yi, f(x:)) + A(IFII% — 4%) (21)

i=1

for A > 0, which is similar to problem (20) that is solved in practice. However
in the case of (21) the Lagrange multiplier A is not known before having the
training data, unlike in the case of (20).

So, to summarize, for the machines (1) studied in this paper, A is fixed a
priori and the “regularization parameter” X is not known a priori, while for ma-
chines (20) the parameter A is known a priori, but the norm of the solution (or
the effective A) is not known a priori. As a consequence we can use the theorems
of this paper for machines (1) but not for (20). To do the second we need a
technical extension of the results of section 2 similar to the extension of theorem
3 to 4 done in [3]. On the practical side, the important issue for both machines
(1) and (20) is how to choose A or A\. We believe that the theorems and bounds
discussed in sections 2 and 3 cannot be practically used for this purpose. Criteria
for the choice of the regularization parameter exist in the literature - such as
cross validation and generalized cross validation - (for example see [10,11],[6]
and references therein), and is the topic of ongoing research. Finally, as our re-
sults indicate, the generalization performance of the learning machines can be
bounded using any function of the slack variables and therefore of the margin
distribution. Is it, however, the case that the slack variables (margin distribu-
tions or any functions of these) are the quantities that control the generalization

Generalization Performance of Kernel Classifiers with Margin 315

performance of the machines, or there are other important geometric quantities
involved? Our results suggest that there are many quantities related to the gen-
eralization performance of the machines, but it is not clear that these are the
most important ones.

Acknowledgments:

We wish to thank Peter Bartlett for useful comments.

References

10.
11.

12.

. N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimen-

sions, uniform convergnce, and learnability. J. of the ACM, 44(4):615-631, 1997.
N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 686:337—
404, 1950.

P. Bartlett. The sample complexity of pattern classification with neural networks:
the size of the weights is more important that the size of the network. IEEE
Transactions on Information Theory, 1998.

P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machine and other patern classifiers. In C. Burges B. Scholkopf, editor, Advances
in Kernel Methods—Support Vector Learning. MIT press, 1998.

T. Evgeniou and M. Pontil. On the V-gamma dimension for regression in Repro-
ducing Kernel Hilbert Spaces. In Proceedings of Algorithmic Learning Theory,
Tokyo, Japan, 1999.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization Networks and Support
Vector Machines. Advances in Computational Mathematics Vol. 13, No. 1, pp.
1-50, 2000.

L. Gurvits. A note on scale-sensitive dimension of linear bounded functionals in
banach spaces. In Proceedings of Algorithm Learning Theory, 1997.

J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk
minimization over data-dependent hierarchies. IEEE Transactions on Information
Theory, 1998. To appear. Also: NeuroCOLT Technical Report NC-TR-96-053,
1996, ftp://ftp.dcs.rhbnc.ac.uk/pub/neurocolt/tech_reports.

J. Shawe-Taylor and N. Cristianini. Robust bounds on generalization from the
margin distribution. Technical Report NeuroCOLT2 Technical Report NC2-TR-
1998-029, NeuroCOLT?2, 1998.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics,
Vol. 59, STAM, Philadelphia, 1990.

R. Williamson, A. Smola, and B. Scholkopf. Generalization performance of regu-
larization networks and support vector machines via entropy numbers. Technical
Report NC-TR-98-019, Royal Holloway College University of London, 1998.

On the Noise Model of Support Vector Machines
Regression

Massimiliano Pontil, Sayan Mukherjee, and Federico Girosi

Center for Biological and Computational Learning, MIT
45 Carleton Street E25-201, Cambridge, MA 02142, USA

{pontil,sayan,girosi}@ai.mit.edu

Abstract. Support Vector Machines Regression (SVMR) is a learn-
ing technique where the goodness of fit is measured not by the usual
quadratic loss function (the mean square error), but by a different loss
function called the e-Insensitive Loss Function (ILF), which is similar
to loss functions used in the field of robust statistics. The quadratic
loss function is well justified under the assumption of Gaussian additive
noise. However, the noise model underlying the choice of the ILF is not
clear. In this paper the use of the ILF is justified under the assumption
that the noise is additive and Gaussian, where the variance and mean of
the Gaussian are random variables. The probability distributions for the
variance and mean will be stated explicitly. While this work is presented
in the framework of SVMR, it can be extended to justify non-quadratic
loss functions in any Maximum Likelihood or Maximum A Posteriori ap-
proach. It applies not only to the ILF, but to a much broader class of
loss functions.

1 Introduction

Support Vector Machines Regression (SVMR) [8,9] has a foundation in the
framework of statistical learning theory and classical regularization theory for
function approximation [10, 1]. The main difference between SVMR, and classical
regularization is the use of the e-Insensitive Loss Function (ILF) to measure the
empirical error. The quadratic loss function commonly used in regularization
theory is well justified under the assumption of Gaussian, additive noise. In the
case of SVMR it is not clear what noise model underlies the choice of the ILF.
Understanding the nature of this noise is important for at least two reasons: 1) it
can help us decide under which conditions it is appropriate to use SVMR rather
than regularization theory; and 2) it may help to better understand the role of
the parameter e, which appears in the definition of the ILF, and is one of the
two free parameters in SVMR.

In this paper we demonstrate the use of the ILF is justified under the as-
sumption that the noise affecting the data is additive and Gaussian, where the
variance and mean are random variables whose probability distributions can be
explicitly computed. The result is derived by using the same Bayesian frame-
work which can be used to derive the regularization theory approach, and it is
an extension of existing work on noise models and “robust” loss functions [2].

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 316-324, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

On the Noise Model of Support Vector Machines Regression ~ 317

The plan of the paper is as follows: in section 2 we briefly review SVMR
and the ILF; in section 3 we introduce the Bayesian framework necessary to
prove our main result, which is shown in section 4. In section 5 we show some
additional results which relate to the topic of robust statistics.

2 The e-Insensitive Loss Function

Consider the following problem: we are given a data set g = {(x;,4;)}¥,, ob-
tained by sampling, with noise, some unknown function f(x) and we are asked
to recover the function f, or an approximation of it, from the data g. A common
strategy consists of choosing as a solution the minimum of a functional of the

following form:
1

Hf) = 3" Vi — f(x:)) + adlf], (1)
i=1
where V' (z) is some loss function used to measure the interpolation error, a is
a positive number, and @[f] is a smoothness functional. SVMR correspond to a
particular choice for V, that is the ILF, plotted below in figure (1):

0 if |[z] <e
|z| — € otherwise.

Viz) = x| = { (2)

V(x)

Fig. 1. The ILF V. ().

Details about minimizing the functional (1) and the specific form of the smooth-
ness functional (1) can be found in [8,1, 3].

The ILF is similar to some of the functions used in robust statistics [5], which
are known to provide robustness against outliers. However the function (2) is not

318 Massimiliano Pontil et al.

only a robust cost function, because of its linear behavior outside the interval
[—¢€, €], but also assigns zero cost to errors smaller then e. In other words, for
the cost function V. any function closer than e to the data points is a perfect
interpolant.

It is important to notice that if we choose V(z) = 22, then the functional (1)
is the usual regularization theory functional [11,4], and its minimization leads
to models which include Radial Basis Functions or multivariate splines. The
ILF represents therefore a crucial difference between SVMR and more classical
models such as splines and Radial Basis Functions. What is the rationale for
using the ILF rather than a quadratic loss function like in regularization theory?
In the next section we will introduce a Bayesian framework that will allow us to
answer this question.

3 Bayes Approach to SVMR

In this section, the standard Bayesian framework is used to justify the variational
approach in equation (1). Work on this topic was originally done by Kimeldorf
and Wahba, and we refer to [6,11] for details.

Suppose that the set g = {(x;,3;) € R" x R}, of data has been obtained
by randomly sampling a function f, defined on R™, in the presence of additive
noise, that is

f(xz):yl+5lv Z:]-aaN (3)

where §; are random independent variables with a given distribution. We want
to recover the function f, or an estimate of it, from the set of data g. We take a
probabilistic approach, and regard the function f as the realization of a random
field with a known prior probability distribution. We are interested in maximizing
the a posteriori probability of f given the data g, which can be written, using
Bayes’ theorem, as following;:

Plf1g] < Plglf1 PIS], (4)

where P[g|f] is the conditional probability of the data g given the function f and
P[f] is the a priori probability of the random field f, which is often written as
P[f] < e ®lf], where ®[f] is usually a smoothness functional. The probability
Plg|f] is essentially a model of the noise, and if the noise is additive, as in
equation (3) and i.i.d. with probability distribution P(¢), it can be written as:

N
Plglf] =TT P(30): (5)

Substituting equation (5) in equation (4), it is easy to see that the function
that maximizes the posterior probability of f given the data g is the one that
minimizes the following functional:

N
H[f] = =) log P(f(xi) — y:) + a®[f] . (6)

On the Noise Model of Support Vector Machines Regression 319

This functional is of the same form as equation (1), once we identify the loss
function V' (z) as the log-likelihood of the noise. If we assume that the noise in
equation (3) is Gaussian, with zero mean and variance o, then the functional
above takes the form:

Z%i_v: —i—o@[f]

which corresponds to the classical regularization theory approach [11,4]. In order
to obtain SVMR in this approach one would have to assume that the probability
distribution of the noise is P(§) = e~ %<, Unlike an assumption of Gaussian noise,
it is not clear what motivates in this Bayesian framework such a choice. The next
section will address this question.

4 Main Result

In this section we build on the probabilistic approach described in the previous
section and on work done by Girosi [2], and derive a novel class of noise models
and loss functions.

4.1 The Noise Model

We start by modifying equation (5), and drop the assumption that noise variables
have all identical probability distributions. Different data points may have been
collected at different times, under different conditions, so it is more realistic to
assume that the noise variables §; have probability distributions P; which are
not necessarily identical. Therefore we write:

Plolf] = HP (7)

Now we assume that the noise distributions P; are actually Gaussians, but do
not have necessarily zero mean, and define P; as:

PZ((S'L) XX eiﬁi(éifti)2. (8)

While this model is realistic, and takes into account the fact that the noise
could be biased, it is not practical because it is unlikely that we know the set of
parameters B = {3;}¥, and t = {t;}Y,. However, we may have some informa-
tion about B and t, for example a range for their values, or the knowledge that
most of the time they assume certain values. It is therefore natural to model
the uncertainty on 3 and t by COHbldeI"lIlg them as i.i.d. random variables, with
probability distributions P(3,t) = Hl 1 P(Bi,t;). Under this assumption, equa-
tion (8) can be interpreted as P;(d;|0;,t:), the conditional probability of §; given
G and t;. Taking this in account, we can rewrite equation (4) as:

Plflg,8,t] HP (6:15:, t:)PLf). 9)

320 Massimiliano Pontil et al.

Since we are interested in computing the conditional probability of f given g,
independently of B and t, we compute the marginal of the distribution above,
integrating over 8 and t:

N
PU7lg) o [a6 [at T] P, oPlfIP(B.0), (10)

Using the assumption that 3 and t are i.i.d., so that P(83,t) = Hf\il P(Bi,t:),
we can easily see that the function that maximizes the a posteriori probability
P*[f]g] is the one that minimizes the following functional:

N
H[f) = V(f(xi) = y:) + a®[f], (11)
i=1
where V is given by:

V(x) = ~log /OOO a5 | " /B0 p(g, 1), (12)

where the factor /3 appears because of the normalization of the Gaussian (other
constant factors have been disregarded). Equations (11) and (12) define a novel
class of loss functions, and provide a probabilistic interpretation for them: using
a loss function V' with an integral representation of the form (12) is equivalent
to assuming that the noise is Gaussian, but the mean and the variance of the
noise are random variables with probability distribution P(83,t). The classical
quadratic loss function can be recovered by choosing P(8,t) = 6(8 — 52)(t),
which corresponds to standard Gaussian noise with variance o and zero mean.
The class of loss functions defined by equation (12) is an extension of the
model discussed in [2], where only unbiased noise distributions are considered:

Vi) = ~log | " 4gy/Be % P(p). (13)

Equation (13) can be obtained from equation (12) by setting P(8,t) = P(3)d(¢).
In this case, the class of loss functions can be identified as follows: given a loss
function V' in the model, the probability function P(() in equation (13) in the
inverse Laplace transform of exp (—V(y/x)). So V(z) verifies equation (13) if
the inverse Laplace transform on exp(—V(y/z)) is nonnegative and integrable.
In practice this is very difficult to check directly. Alternative approaches are
discussed in [2]. A simple example of loss functions of type (13) is V(z) =
|z]%, a(0, 2]. When a = 2 we have the classical quadratic loss function for which
P(B) = d(B) . The case a = 1 corresponds to the L; loss and equation (13) is
solved by: P(8) = 32 exp—ﬁ.

4.2 The Noise Model for the ILF

In order to provide a probabilistic interpretation the ILF we need to find a
probability distribution P.(8,t) such that equation (12) is verified when we set

On the Noise Model of Support Vector Machines Regression 321

V(z) = |z|c. This is a difficult problem, which requires the solution of an integral
equation. Here we state a solution, but we do not know whether this solution is
unique. The solution was found by extending work done by Girosi in [2] for the
case where € = 0, which corresponds to the function V(x) = |z|. The solution

we found has the form P(8,t) = P(8)Ac(t) where we have defined
(14)

1

—ag

and
L (e () + 6t —) + 6(t + 6)). (15)

Ae(t) = e+ 1)

where X[_.q is the characteristic function of the interval [—¢,¢] and C is a
normalization constant. Equations (14) and (15) arederived in the appendix. The
shape of the functions in equations (14) and (15) is shown in figure (2). The above
model has a simple interpretation: using the ILF is equivalent to assuming that
the noise affecting the data is Gaussian. However, the variance and the mean of
2 ﬁ) has a unimodal

the Gaussian noise are random variables: the variance (o
distribution that does not depend on ¢, and the mean has a distribution which

is uniform in the interval [—¢, €], (except for two delta functions at Fe, which
ensure that the mean is occasionally exactly equal to Fe). The distribution of
the mean is consistent with the current understanding of the ILF: errors smaller
than € do not count because they may be due entirely to the bias of the Gaussian

noise.
04
o~
og !
{ A a5
07 _l’ A\
' ! \\‘ s
0g / \ 3
Ir \
i / \ g’
o Jll.'l \\\I Ez.s
o3t | Y .
\ 154
0z ,’r N,
/ \, it
o1 \\\x -
o — " n " "
a) g LA i s T Z 23 2 2 b) 04 03 02 -0 B 0.1 02 03 0.4
1 . .
= 55 and P(f) is given by

Fig. 2. a) The probability distribution P(c), where o
equation 14 ; b) The probability distribution Ae¢(z) for € = .25 (see equation 15).

322 Massimiliano Pontil et al.

5 Additional Results

While it is difficult to state the class of loss functions with an integral represen-
tation of the type (12), it is possible to extend the results of the previous section
to a particular sub-class of loss functions, ones of the form:

h(z)if |z] < e
Ve(z) = (16)

|z| otherwise,

where h(z) is some symmetric function, with some restriction that will become
clear later. A well known example is one of Huber’s robust loss functions [5], for

which h(z) = % + § (see figure (3.a)). For loss functions of the form (16), it can
be shown that a function P(f3,t) that solves equation (12) always exists, and it
has a form which is very similar to the one for the ILF. More precisely, we have
that P(8,t) = P(B)Ac(t), where P(() is given by equation (14), and A\.(¢) is the

following compact-support distribution:

[Pt)=P (@t)if |t| <e
Ac(t) = {O otherwise, (17)
where we have defined P(z) = e~V (#) | This result does not guarantee, however,
that \. is a measure, because P(t) — P"(t) may not be positive on the whole
interval [—e¢, €], depending on h. The positivity constraint defines the class of
“admissible” functions h. A precise characterization of the class of admissible
h, and therefore the class of “shapes” of the functions which can be derived in
this model is currently under study [7]. It is easy to verify that the Huber’s
loss function described above is admissible, and corresponds to a probability

distribution for which the the mean is equal to Ac(t) = (1 + I — (%)2)6*§ over
the interval [—¢, €] (see figure (3.b)).

6 Conclusion and Future Work

An interpretation of the ILF for SVMR was presented. This will hopefully lead
to a better understanding of the assumptions that are implicitly made when
using SVMR. This work can be useful for the following two reasons: 1) it makes
more clear under which conditions it is appropriate to use the ILF rather than
the square error loss used in classical regularization theory; and 2) it may help
to better understand the role of the parameter e. We have shown that the use
of the ILF is justified under the assumption that the noise affecting the data is
additive and Gaussian, but not necessarily zero mean, and that its variance and
mean are random variables with given probability distributions. Similar results
can be derived for some other loss functions of the “robust” type. However,
a clear characterization of the class of loss functions which can be derived in
this framework is still missing, and it is the subject of current work. While we
present this work in the framework of SVMR, similar reasoning can be applied

On the Noise Model of Support Vector Machines Regression 323

25

M, — =
' -~
/! e ™
\\ Vi 15 P
‘, / 4
/
Y S /
™, / a5
\ /
b s
1 / 3
N / . ‘
E E / 2
= \\ . Eu
1 \ 4 2
\ /
\ Vs 15
Y S
0. AY / 1
\ ;
_/ N ‘
0 L n i " " " "
=25 Z 1.5 1 -0.5 a os 1 15 2 a5 05 04 03 -02 -0 o ol 02 03 o4 0
a) * a)

Fig. 3. a) The Huber loss function; b) the corresponding Ac(z), € = .25. Notice the
difference between this distribution and the one that corresponds to the ILF: while for
this one the mean of the noise is zero most of the times, in the ILF all the values of
the mean are equally likely.

to justify non-quadratic loss functions in any Maximum Likelihood or Maximum
A Posteriori approach. It would be interesting to explore if this analysis can be
used in the context of Gaussian Processes to compute the average Bayes solution.

Acknowledgments
Federico Girosi wish to thank Jorg Lemm for inspiring discussions.

References

1. T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector
machines. Advances in Computational Mathematics, 13:1-50, 2000.

2. F. Girosi. Models of noise and robust estimates. A.I. Memo 1287, Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology, 1991.
ftp://publications.ai.mit.edu/ai-publications/1000-1499 /AIM-1287.ps.

3. F. Girosi. An equivalence between sparse approximation and Support Vector Ma-
chines. Neural Computation, 10(6):1455-1480, 1998.

4. F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks
architectures. Neural Computation, 7:219-269, 1995.

5. P.J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.

6. G.S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on
stochastic processes and smoothing by splines. Ann. Math. Statist., 41(2):495-502,
1971.

7. M. Pontil, S. Mukherjee, and F. Girosi. On the noise model of support vec-

tor machine regression. A.I. Memo 1651, MIT Artificial Intelligence Lab., 1998.

ftp://publications.ai.mit.edu/ai-publications/1500-1999/AIM-1651.ps.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

9. V. Vapnik, S.E. Golowich, and A. Smola. Support vector method for function
approximation, regression estimation, and signal processing. In M. Mozer, M. Jor-
dan, and T. Petsche, editors, Advances in Neural Information Processing Systems
9, pages 281-287, Cambridge, MA, 1997. The MIT Press.

%

324 Massimiliano Pontil et al.

10. V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
11. G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics,
Vol. 59, STAM, Philadelphia, 1990.

Appendix

Proof of eq. 14

We look for a solution of eq. (12) of the type P(8,t) = P(6)A(t). Computing
the integral in equation (12) with respect to 3, we obtain:

e V@ = / - dtA(t)G(z —t,) (18)

— 00

where we have defined:

w0=4wﬂwwm@€“5 (19)

Notice that the function G is, modulo a normalization constant, a density distri-
bution, because both the functions in the r.s.h. of equation (19) are overlapping
densities. In order to compute G we observe that for e = 0, the function e~|®le
becomes the Laplace distribution which belongs to the model in equation (13).
Then, Ac—o(t) = 0(¢) and from equation (18) we have:

G(t) = eIt (20)

Then, in view of the example discussed at the end of section 4.1 and equation
(20), the function P(8) in equation (19) is:

P(B) = Fe 7,
which (modulo a constant factor) is equation (14). To derive equation (15), we
rewrite equation (18) in Fourier space:

e = Gw)Ac(w), (21)
with:
Flelwle] = sm(f()ltrw:;)s(m), (22)
and:
~ 1
Gw) = T2 (23)

Plugging equation (22) and (23) in equation (21), we obtain:

Ae(w) = smijiew) + cos(ew).

Finally, taking the inverse Fourier Transform and normalizing we obtain equa-
tion (15).

Computationally Efficient Transductive
Machines

Craig Saunders, Alex Gammerman, and Volodya Vovk

Royal Holloway, University of London
Egham, Surrey, England, TW20 0EX
Qcraig,alex,vovk{@dcs.rhbnc.ac.uk

Abstract. In this paper we propose a new algorithm for providing con-
fidence and credibility values for predictions on a multi-class pattern
recognition problem which uses Support Vector machines in its imple-
mentation. Previous algorithms which have been proposed to achieve
this are very processing intensive and are only practical for small data
sets. We present here a method which overcomes these limitations and
can deal with larger data sets (such as the US Postal Service database).
The measures of confidence and credibility given by the algorithm are
shown empirically to reflect the quality of the predictions obtained by
the algorithm, and are comparable to those given by the less computa-
tionally efficient method. In addition to this the overall performance of
the algorithm is shown to be comparable to other techniques (such as
standard Support Vector machines), which simply give flat predictions
and do not provide the extra confidence/credibility measures.

1 Introduction

Many risk-sensitive applications such as medical diagnosis, or financial analy-
sis require predictions to be qualified with some measure of confidence. Indeed
in general, any predictive machine-learning algorithm which requires human-
computer interaction, often benefits from giving qualified predictions. The us-
ability of the system is improved, and predictions with low confidence can be
filtered out and processed in a different manner.

In this paper we have two aims: firstly, we wish to provide confidence and
credibility values for our predictions, rather than the simple “flat” answer given
by many Machine Learning techniques (such as a standard Support Vector Ma-
chine [10]); secondly we want to obtain these values in an efficient manner so
that the algorithm is practical for large data sets, and does not suffer the time
penalties of previously proposed algorithms (e.g. those in [1,7]).

To achieve the confidence and credibility measures, we build on ideas of
algorithmic information theory (see [12]). By using these ideas, we are able to
provide confidence measures with a strong theoretical foundation, and which do
not rely on stronger assumptions than the standard i.i.d. one (we actually make
a slightly weaker assumption, that of exchangeability). This is in contrast to
many alternative methods (such as the Bayesian approach), which often require

H. Arimura, S. Jain and A. Sharma (Eds.): ALT 2000, LNAI 1968, pp. 325-337, 2000.
© Springer-Verlag Berlin Heidelberg 2000

326 Craig Saunders et al.

a prior probability (which is not known and has to be estimated), and confidence
measures are given on the assumption that this prior is the correct one. In order
to compute these values we use Support Vector Machines and the statistical
notion of p-values, in an extension of the ideas presented in [7]. The multi-class
method presented in that exposition however, was processing-intensive, and the
length of time required meant that the algorithm was not practical for medium
to large datasets. The method presented here (and originated in [11]) however,
overcomes these difficulties, and in section 4 experiments are conducted on much
larger data sets (e.g. 7900 training, 2000 test).

The layout of this paper is as follows. In section 2 we describe the the-
oretical motivation for the algorithm, then in section 3 we concentrate on a
specific implementation which uses Support Vector machines. In this section we
briefly describe a previous method of qualifying Support Vector method predic-
tions, and extend the technique to the multi-class case. The inefficiencies of this
method are presented, and a new algorithm is proposed. Experimental evidence
is presented in section 4 which indicates that as well as providing confidence
and credibility values, the algorithm’s predictive performance is comparable to
a standard Support Vector machine when using the same kernel function. Specif-
ically, experiments were carried out on the US Postal Service digit database, and
a comparison is made between the new algorithm, the algorithm presented in [7],
and a standard Support Vector Machine. In section 5 we discuss the merits of
this approach and suggest future directions of research.

2 Randomness

In [12] it was shown that approximations to universal confidence measures can be
computed, and used successfully as a basis for machine learning. In this section
we present a summary of the relevant ideas, which will provide a motivation for
the technique described in section 3. What we are principally interested in is
the randomness of a sequence z = (21, ... , z,) of elements of z; € Z where Z is
some sample space (for the applications presented in this paper, z is a sequence
(x1,Y1)s -+ (X1, 91)s (X141, Yi41) where x; € R",y € Z, containing [training
examples and one test example along with some provisional classification). Let
P = Pi1,P2,... be a sequence of statistical models such that, for every n =
1,2,..., P, is a set of probability distributions in Z™. In this paper we will
only be interested in specific computable P (namely, the iid and exchangeability
models). We say that a function ¢ : Z* — N (where N is the set {0,1,...} of
non-negative integers) is a log-test for P-typicalness if

1. forallne Nand m € Nand all P € P,,, P{z € Z" : t(z) > m} <27 ™.
2. t is semi-computable from below.

As proven by Kolmogorov and Martin-Lof (1996) (see also [1]), there exists a
largest, to within an additive constant, log-test for P-randomness, which is called
P-randomness deficiency. When P,, consists of all probability distributions of the
type P™, P being a probability distribution in Z, we omit “P-" and speak of just

Computationally Efficient Transductive Machines 327

randomness deficiency. If d(z) is the randomness deficiency of a data sequence z,
we call §(z) = 27%*) the randomness level of z. The randomness level § is the
smallest, to within a constant factor, p-value function; the latter notion is defined
as follows: a function ¢ : Z* — [0, 1]) is a p-value function w.r.t. the iid model if

1. for all n € N and r € [0, 1] and all distributions P € Z,
P{zeZ":t(z) <r} <r.(1)
2. t must be semi-computable from above.

The randomness level is a universal measure of typicalness with respect to the
class of iid distributions: if the randomness level of z is close to 0, z is untypical.
Functions ¢ which satisfy the above requirement are called p-typicalness tests.

2.1 Using Randomness

Unfortunately, this measure of typicalness is non-computable (and in practice
one has to use particular, easily computable, p-value functions). If however one
could compute the randomness deficiency of a sequence and we accept the iid
assumption and ignore computation time, then the problem of prediction would
become trivial. Assuming we have a training set (x1,%1),...,(X;,y) and an
unlabelled test example x;41, we can do the following:

1. Consider all possible values Y for the label y;41, and compute the random-
ness level of every possible completion

(Xlayl)a s 7(Xlayl)7 (XlJrlaY)

2. Predict Y corresponding to the completion with the largest randomness level.

3. Output as the confidence in this prediction one minus the second largest
randomness level.

4. Output as the credibility the randomness level of the prediction.

The intuition behind confidence can be described with the following example.
Suppose we choose a “significance level” of 1%. If the confidence in our prediction
exceeds 99% and we are wrong, then the actual data sequence belongs to the
set of all data sequences with randomness level less than 1%, (which by (1) is
a very rare event). Credibility can be seen as a measure of quality of our data
set. Low credibility means that either the training set is non-random or the test
example is not representative of the test set.

2.2 Use in Practice

In order to use these ideas in practice, we will associate a strangeness measure
with each element in our extended training sequence (denoted «;). If we have
a strangeness measure which is invariant w.r.t. permutation of our data, the
probability of our test example being the strangest in the sequence is ZJ%I

328 Craig Saunders et al.

Because all permutations of strangeness measures are equiprobable, we can
generalise this into a valid p-typicalness function :

#i:a; > a1}
I+1 '

t(z) =

This is the type of function we will use in order to approximate the randomness
level of a sequence. In this paper, our strangeness measures («;) are constructed
from the Lagrange multipliers of the SV optimisation problem, or the distances
of examples from a hyperplane.

3 SV Implementation

In this section we describe a way of computing confidence and credibility values
which uses Support Vector Machines. We first describe and extend the method
outlined in [7] to the multi-class case. The new method presented later in this
section is more computationally efficient than the one presented in [7] (for timings

see section 4), allowing much larger datasets to be used.

3.1 Original Method

In [7], a method for two-class classification problems was presented. The method
involved adding a test example to the training set, along with a provisional
classification (say —1). A Support Vector machine was then trained on this
extended set, and the resultant Lagrange multipliers were used as a strangeness
measure. That is the following optimisation problem was solved :

l

1

max E o — 3 E aiajyiyjlc(xivxj)a
=1 i,7=1,...,l+1

subject to the constraints,

Y =000 i=1,...,0+1 (1)

The p-typicalness function took the form :

#{i:a; >}
[+1

p_:

The test example was then added to the training set with a provisional classifica-
tion of +1, and p4 was calculated in a similar fashion. Confidence and credibility
were then calculated as outlined in section 2.1.

Computationally Efficient Transductive Machines 329

Extension to Multi-Class Problems The method above can easily be ex-
tended to the multi-class case. Consider an n-class pattern recognition problem.
This time, for each test example, n optimisation problems have to be solved (one
for each possible classification). We generate n “one against the rest” classifiers,
each time using the resultant a-values to calculate p-typicalness as follows. For
each class m € {1,...,n}, train an m-against-the-rest Support Vector machine,
and calculate p,, as :

#{i: (i > aip1) Alys =m)}
|Sml ’

Pm =

where
Sm = {(Xivyi) CYi = m)}

That is, for each classifier, we only use the a-values which correspond to the
provisional classification given, in our calculation of p-typicalness. Unfortunately,
although this method works in practice, it is rather inefficient and can only be
used on small data sets. Consider as an example of a medium-large problem,
the well known 10-class digit recognition problem of the US Postal Service data
set. To train a single “one vs. the rest” SV machine on this data set takes
approximately 2 minutes. Therefore, to use the above method to classify a test
set of 2000 examples, it would take approximately 2 x 10 x 2007 = 40140 minutes.
Which is roughly 1 month! Clearly this is unacceptable, and an improvement has
to be found.

3.2 New Method

The general idea is as follows; we create a hash function f;, : R — {1,... A},
which when given a training vector x;, returns a value in the range {1,...,h}.
This is used to create a total of h x n subsets of our training data (where n is
the number of classes in our training set). For each class in the training set,
a Support Vector Machine is trained in the following way. For every possible
output of the hash function j, train a Support Vector Machine each time leaving
out of the training process those examples which both are a member of the class
being considered, and return a value of j from the hash function.

More formally, we have the following. We are given a training set 7" which
consists of | examples and their labels (x1,v1),...,(x;,4), where x;, € R¢
and y € {1,...,n}. We also have a hash function f}, : RY — {1,...,h}. Note
that the hash function should be chosen so that it is “pseudo-random” and
splits the training set into roughly equal portions. The hash function used in
the experiments in this paper simply computed the sum of all attribute values
modulo h plus 1.

First of all we create nh sets .S; ; from our training set

Sij =Xk, 1) s yp =4, fu(xx) # 7} U{(xXk, —1) sy # i}, (2)

330 Craig Saunders et al.

where i = 1,... ,n and j = 1,... ,h. On each of these sets we train a Support
Vector Machine. That is, we obtain An functions of the form
Fij(x)= Y onyeK(xs,x),

k:(xk,yx)E€Si,;

where K is some kernel function, and the «;’s are obtained by solving the fol-
lowing optimisation problems; maximise

1
Z ap — 5 Z aka’rrbyky’rrL’C(Xk7X’rrL)7

k=1 km:(xk,yk),(Xm,ym)ESi,j

subject to the constraints,

Z ypap =0, ar >0, k=1,...,]5 ;]
k:(xk,yk)€Si,;

This is similar to the “one against the rest” method which is often used in
multi-class Support Vector Machines [9]. For our purposes though, we create
several “one against the rest” classifiers for every class, each time only includ-
ing positive examples which have a particular value when the hash function is
applied.

3.3 Classification, Confidence, and Credibility

The procedure for classifying a new test example is given by Algorithm 1. In a
nutshell the procedure simply applies the hash function to some new example
Xnew, then for each class identifies a working set (denoted W;) and a particular
function F; ; (which did not use any element of the working set in its creation).
The function F; ; is then used to obtain the distance to the hyperplane for each
element of the working set, and our new example (these distances are denoted
by di,...,djw,|, dnew). Note that “distance” here is defined as the output of a
function F; ;j(x), and therefore can be negative (if the point x lies on a specific
side of the hyperplane). In order to give confidence and credibility values for the
new example, we compute the example’s p-value for each possible classification.
Once the distances dy, . .. , djw,|, dnew to the hyperplane for a particular working
set W; (including our new test example) have been calculated, the p-value is sim-
ple to compute. The ideal situation is where our new example is the “strangest”
example of the working set. For this algorithm the strangest example is the one
with the smallest distance to the hyperplane (recall that “distance” in this sense
can be negative, so the smallest dy, is either the example furthest on the “wrong”
side of the hyperplane for classification ¢, or if all examples are on the positive
side, the example closest to the hyperplane). The probability that our example
Xnew has the smallest valued distance to the hyperplane out of all examples in
the working set is simply

1
P dnw< i d §77
{ S kst ’“} Wil +1

Computationally Efficient Transductive Machines 331

Algorithm 1 Classifying a new test sample Xpew

Obtain jnew = fn(Xnew)-

for Each class ¢ in training set do
Create a working set W; which includes all examples in the training set with yi = ¢
and fr(Xk) = Jnew (6. Wi = : frn(Xk) = Jnew, ye = 4,k =1,... 1.
For every example in W; and Xnew use Fj ., (see eq (2)) to get the distance d
from the hyperplane.

Compute p-value (p;) for new example, where p; = #{kidgSdnew}

[W;l+1

end for
Predicted classification is arg max p;.
Confidence in prediction is 1 — mgx Dj-

YE
Credibility of prediction is max p;.

3
(since all permutations of dy, ... ,dw,|, dnew are equiprobable).

The distances from the hyperplane are a valid strangeness measure (i.e. they
are invariant under permutation), so we can construct a valid p-typicalness func-

tion as follows :
o #{k : dk S dnew}
Pi = |W1| T

As stated in Algorithm 1, our prediction for X,eyw is given by the classification
which yielded the highest p-value. In an ideal case, the p-value associated with
the correct classification will be high, say > 95%, and for all other classifications
it will be low, say < 5%. In this case both confidence and credibility will be high
and our prediction is deemed to be reliable. If however the example looks very
strange when given all possible classifications (i.e. the highest p-value is low, e.g.
< 10%), then although confidence may be high (all other p-values may still be
< 5%), our credibility will be low. The intuition here would be: although we are
confident in our prediction (the likelihood of it being another candidate is low),
the quality of the data upon which we base this prediction is also low, so we can
still make an error. This would concur with the intuition in section 2. In this
situation our test example may not be represented by the training set (in our
experiments this would correspond to a disfigured digit).

4 Experiments and Results

Experiments were conducted on the well known benchmark USPS database (see
e.g. [3]), which consists of 7291 training examples and 2007 test examples, where
each example is a 16 x 16 pixelated image of a digit in the range 0-9. For all
these experiments, the following kernel was used

(x-y)?°

Kx,y) = 95

332 Craig Saunders et al.

Although this kernel does not give the best possible performance on the data
set, it is comparable and is only meant to ensure that a comparison between the
techniques presented here is a fair one.

4.1 Efficiency Comparison

In order to compare this method to the one presented in [7], we conducted
an experiment on a subset of the USPS data set. All examples of the digits 2
and 7 were extracted from the data set creating a two-class pattern recognition
problem with 1376 training examples and 345 test examples. Table 1 shows the
timings and error rates for both methods'. Note that a normal Support Vector
machine also has 3 errors on this data set (when trained with the same kernel
function). Also in this case, the 3 errors produced by the SV machine and the
two transductive methods were the same 3 examples. For the new method the
range of values which the hash function can produce (h), can be changed. The
value of h determines how many subsets each class in the training set is split
into, and results are shown for h = 2, 3, and 4. Even though the data set in this

Method Time Errors|ave -log p-value
Old |5 hrs 20 mins| 3 3.06

2 Splits 39 secs| 4 2.51

3 Splits 50 secs| 3 2.33

4 Splits| 1 min 4 secs| 3 2.20

Table 1. Timings, errors (out of 345), and average -log (base 10) p-values for
the different methods, on a 2-class subset of the USPS data set. Note that large
average p-values are preferable (see section 4.2)

experiment would not normally be considered to be large, the previous method
suffers a heavy time penalty. The table clearly shows that the method proposed
in this paper is more efficient, whilst retaining the same level of performance.
In order to interpret the last column of the table, notice that a -log p-value of 2
indicates a p-value of 1%.

The gap in efficiency between the two methods is due to the fact that the new
method does not have to run two optimisation problems for each test point. If
the number of test examples is increased, the time taken by the hashing method
does not alter significantly. The old method however, scales badly with any such
increase. In order to illustrate this in practice we used a subset of the data
described above. A total of 400 examples were used for training, and two test set
sizes were used: 100 examples and 345 examples. Table 1 shows the error rates
and timings of the old method, and the hashing method with 3 hash sets. Notice
the time penalty incurred by the old method as the test set is expanded.

! Note that for the experiments we used the SVM implementation from Royal Hol-
loway. See [3] for details.

Computationally Efficient Transductive Machines 333

Method Time (100 examples) Time (345 examples)
Old |11 mins 37 secs (0 errors)|39 mins 16 secs (5 errors)
3 Splits 12 secs (0 errors) 13 secs (6 errors)

Table 2. Timings and error rates for the two methods. The training set size was
400, and two test sets of size 100 and 345 were used. The old algorithm suffers
a heavy time penalty with the increase in test set size.

4.2 Predictive Performance of the Algorithm

Experiments were also conducted on the full USPS data set, and the performance
of the algorithm was measured when each class was split into different numbers
of subsets. Table 2 summarises these results. In the case of having 5 splits,
the performance of the algorithm deteriorated. This could be due to the fact
that although by having 5 splits the training set was larger and therefore one
would expect a better decision function, the working set is greatly reduced in
size. This led to the p-values for many classes being of the same magnitude and
would therefore result in more misclassifications. As a point of comparison for

No of Splits|Error Rate|ave -log p-value
2 5.7% 2.46
3 5.5% 2.23
4 5.4% 2.04
5 6.0% 1.91

Table 3. Error rates for different numbers of splits of each class; the last column
gives the average minus log p-value over all incorrect classifications. The data
set used was the 10-class USPS data set.

the results shown in table 2, note that the Support Vector Machine when using
the same kernel has an error rate of 4.3%. Although for the smaller data set
used in the previous section the performance of the new method, the original
transductive method, and the Support Vector machine was identical, our quest
for efficiency on a large data set has resulted in a small loss in performance in
this case. Our aim though is to produce valid confidence and credibility values
whilst retaining good performance, we are not necessarily trying to outperform
all other methods. The table shows that the performance of the algorithm does
not suffer to a large extent, even though it provides the extra measures.

The last column in the table shows the average minus log of p-values calcu-
lated for the incorrect classifications of the new example. For relatively noise-free
data sets we expect this figure to be high, and our predictive performance to be
good. This can also be interpreted as a measure of the quality of our approx-
imation to the actual level of randomness, the higher the number, the better
our approximation. This is our main aim: to improve the p-values produced by

334 Craig Saunders et al.

the algorithm. We believe that good predictive performance will be achieved as
our p-values improve. This can already be seen in the progression from the algo-
rithm presented in [1]. Our algorithm provides better confidence and credibility”
values, and our predictive performance is also higher.

When comparing p-values in the tables it is important to note that there is
an upper bound on the ave -log p-value which can be obtained. This stems from
the fact that even if every incorrect classification is highlighted by the algorithm
as the strangest possible, then the p-value is restricted by the sample size from
which it is obtained. As an example, consider the p-values obtained in table 1. For
the old method, the strangeness measure was taken over the whole training set
(approx. 1300 examples). This would yield a maximum average (-log p-value) of
3.11. For hashing however, we are restricted to computing p-typicalness functions
over the hash set. For 3 splits, each hash set contains roughly 225 examples. This
would yield a maximum average of 2.34. For larger data sets, we would therefore
hope that this figure qould improve (as the hash set size would increase).

4.3 Confidence and Credibility Values

For the experiments, the confidence in our predictions was typically very high,
85-99%. This was due to the data set being relatively noise free. In a data set
corrupted by noise, we would expect the prediction not to be so clear cut. That
is, the noise in the data may make another classification (other than correct one)
appear to be random. The correct classification may have a large p-value (95%),
and therefore may clearly be one we predict. The confidence in the prediction
however, will be lower.

Our intuition behind the measure of credibility was that it should reflect
the “quality” of our predictions. If credibility is low, then the example looks
strange for every possible classification, and so our prediction is not as reliable.
It is therefore expected that the credibility associated with a prediction which is
later found to be incorrect, should be low in a majority of cases. This has been
observed experimentally and is illustrated by Figure 1, which displays histograms
showing the number of incorrect predictions which have credibility within a
certain range for 2,3 and 4 splits.

4.4 Rejecting Examples

It is possible to use the measures of confidence and credibility to obtain a rejec-
tion criteria for difficult examples. Suppose we pick a specific confidence thresh-
old, say 95%, and reject all predictions which fall below this level. We can then
expect that the error rate on the remaining predictions will not deviate signifi-
cantly from at most 5%. Note that over randomisations of the training set and
the test example, and over time, we would expect the error rate to be < 5% (over
all examples). In this scenario however, we have a fixed (but large) training set.
Also, we are measuring the error over the non-rejected examples and not the

2 In the paper, the measure of credibility was referred to as possibility.

Computationally Efficient Transductive Machines 335

2 Splits 3 Splits

120 120

100 100

80

60

40 40

Number of Examples
@
3

Number of Examples

20 20

0 — . 0 —
0 01 02 03 04 05 0.6 07 08 0.9 1 0 01 02 03 0.4 05 0.6 07 08 09 1
Credibility (1=100%) Credibility (1=100%)

4 Splits

120

100

80

60

40

Number of Examples

20

0 —
0 01 02 03 0.4 05 0.6 0.7 08 09 1
Credibility (1=100%)

Fig. 1. Credibility values for incorrectly predicted examples, when run with
different numbers of splits.

whole set. If a small number of examples are rejected however, we would not
expect the error rate to deviate significantly from 5%. Unfortunately, it is not
possible to say a-priori how many examples will be rejected. For our experiments
have selected four possible rejection criteria, these are : Confidence, Credibility,
Confidence x Credibility and (1 — Confidence) — Credibility.

The first measure is obvious - we want to reject all classifications which
do not achieve a certain confidence value, therefore capping the generalisation
error. The other measures however, also control generalisation error. We may
wish to reject examples with low credibility; that is, those examples which look
unlikely given any classification. Thirdly, by simply taking the product of the two
measures, we end up with a single measure which is only high when both values
are high. Finally, the difference between typicalness values of the two likeliest
classifications can be used. Again, this is an attempt to reject samples which do
not have a clear leading candidate for the correct classification. The rejection
rate vs. generalisation error on non-rejected examples is plotted for hash sizes
2,3,4 and 5, and are shown in figure 2.

5 Discussion

In this paper we have presented an algorithm which gives both confidence and
credibility values for its predictions, on a multi-class pattern recognition problem.
This method overcomes the time penalties suffered by a previously proposed

336 Craig Saunders et al.

2 Hash Sets 3 Hash Sets 4 Hash Sets

Confidence Confidence Confidence

Credibilty Credibility Credibility

-~~~ (1-Confidence) - Credibility -~~~ (1-Confidence) - Credibility -~~~ (1-Confidence) - Credibility
——- Confidence * Credibility — —- Confidence * Credibility ——- Confidence * Credibilty

S
Error (%)
S

Error (%)

ol 5
0 20 40 60 80 100 0 20 40 60 80 100
% of examples rejected 9% of examples rejected 9% of examples rejected

Fig. 2. Generalisation error on non-rejected examples vs. rejection rate.

algorithm, whilst retaining a comparable level of performance. This allows the
method to be used on large real-world data sets. Empirical evidence has been
presented which indicates that the confidence and credibility values produced
by the algorithm correctly reflect confidence in the prediction and the quality
of the data upon which it was based. Furthermore, in addition to providing
confidence and credibility values, the performance of the algorithm has been
shown to be comparable to that of Support Vector machines. The work here
concentrates on pattern recognition problems, but can easily be extended to
regression estimation. Both Support Vector Machine regression, and methods
such as Ridge Regression (see e.g. [2], or [6] for the kernel-based version) can be
extended to incorporate the ideas in this paper.

Acknowledgements

This work was partially supported by EPSRC GR/L35812 and GR/M15972,
and EU INTAS-93-725-ext grants. In addition we are indebted to the support
provided by IFR Ltd.

References

1. A. Gammerman, V. Vapnik, and V. Vovk. Learning by transduction. In Uncer-
tainty in Artificial Intelligence, pages 148-155, 1998. 325, 334

2. A.Hoerl and R.W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55-67, 1970. 336

3. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. J. Jackel. “Handwritten digit recognition with back-propagation network”.
Advances in Neural Information Processing Systems, pages 396-404, 1990. 331

4. M. Li and P. Vitanyi. An Introduction to Kolmogorov Compezity and Its Applica-
tions. Springer, 1997. 326

5. P. Martin-L6f. The definition of random sequences. Information and Control,
1966.

10.
11.

12.

Computationally Efficient Transductive Machines 337

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm
in dual variables. In ICML ’98. Proceedings of the 15th International Conference
on Machine Learning, pages 515-521. Morgan Kaufmann, 1998. 336

C. Saunders, A. Gammerman, and V. Vovk. Transduction with confidence and
credibility. In Proceedings of IJCAI’99, volume 2, pages 722-726, 1999. 325, 326,
328, 332

C. Saunders, M.O. Stitson, J. Weston, L. Bottou, B. Schélkopf, and A. Smola.
Support Vector machine - reference manual. Technical Report CSD-TR-98-03,
Royal Holloway, University of London, 1998. 332

B. Scholkopf, C. Burges, and V. Vapnik. Extracting support data for a given task.
In Proceedings, First International Conference on Knowledge Discovery and Data
Mining, pages 252-257. AAAI Press, 1995. 330

V. N. Vapnik. Statistical Learning Theory. Wiley, 1998. 325

V. Vovk and A. Gammerman. Algorithmic randomness theory and its applica-
tions in computer learning. Technical Report CLRC-TR-00-02, Royal Holloway,
University of London, 1999. 326

V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications of
algorithmic randomness. In Proceedings of ICML ’99, pages 444-453, 1999. 325,
326

Allison, L., 56
Amamiya, M., 252

Bioch, J. C., 291
Cohen, W. W., 1

DasGupta, B., 264
Denis, F., 71
Dietterich, T. G., 13
Dowe, D. L., 56

ElL Tobely, T., 252
Evgeniou, T., 306

Fernau, H., 116
Fitzgibbon, L. J., 56
Fronhofer, B., 156

Gécs, P., 41
Gammerman, A., 325
Gaur, D. R., 209
Gilleron, R., 71
Girosi, F., 316
Grieser, G., 101

Hammer, B., 264
Haraguchi, M., 166
Hirata, K., 238

Itoh, Y., 166
Itokawa, Y., 141

Krishnamurti, R., 209

Lange, S., 86, 101

Author Index

Letouzey, F., 71

McCreath, E., 131
Miyahara, T., 141
Mukerhjee, S., 316

Nakamura, Y., 141
Nessel, J., 86
Nock, R., 224

Pontil, M., 306, 316
Popova, V., 291

Satoh, K., 179
Saunders, C., 325
Scheffer, T., 194
Sebban, M., 224
Shoudai, T., 141

Takimoto, E., 279
Tromp, J., 41
Tsuda, R., 252
Tsuruta, N., 252
Uchida, T., 141

Vitanyi, P., 41
Vovk, V., 325

Warmuth, M. K., 279
Watanabe, O., 27

Yamamoto, A., 156
Yoshiki, Y., 252

Zeugmann, T., 101

